The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery usin...To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.展开更多
The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away...The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away from the influence of gas diffusion and gas–solid heat transfer and mass transfer, the reaction of Fe2O3 to Fe3O4, Fe3O4 to Fe O and Fe O to Fe in the process of single reaction can be clearly distinguished from each other, and the relevant activation energy is characterized to be 75.4, 74.4, and 84.0 k J·mol-1, respectively. Therefore, the change of surface area in the reaction process due to losing oxygen could be easily calculated by combining it with pre-exponential parameters of Arrhenius equations. In conclusion, these kinetic parameters are verified by the experimental data for the process of ore reduced by carbon monoxide in a packed bed.展开更多
Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensin...Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.展开更多
In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Ma...In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated, and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every s≥1.展开更多
Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matri...Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.展开更多
The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effect...The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effects of impeller speed, impeller type, impeller diameter and feed location on the mean particle size d43 and particle size distribution (PSD) were investigated, d43 and PSD were measured online using a Malvern Insitec Liquid Pro- cess Sizer every 20 s. It was found that d43 varied between 13 kwh and 26 lain under different operating conditions, and it decreased with increasing impeller diameter. When feeding at the off-bottom distance of D/2 under lower impeller speeds, d43 was significantly smaller than that at D/3. PSDs were slightly influenced by operating conditions.展开更多
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling...A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.展开更多
The URI online judge is a new online tool created with the main purpose of making programming practice more dynamic, interesting and stimulating for those who have just entered into the art of programming. The URI onl...The URI online judge is a new online tool created with the main purpose of making programming practice more dynamic, interesting and stimulating for those who have just entered into the art of programming. The URI online judge allows problem corrections in real time, interactivity between users, besides it allows flexibility in the choice of the programming language and it makes some supporting materials available. During the short time in which the tool has being used we have observed that it is a very good tool for self-study. As users of programming portals, the authors noticed some details that would be important to be implemented in a new tool, such as the separation of problems by categories. Another fundamental detail is the fact that this tool is available in two languages (Portuguese and English). This might facilitate the learning process for beginners, both locally and globally.展开更多
An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the prop...An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.展开更多
Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe me...Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe method in time domain is put forward to measure straight-going component motion error in machine tools based on the frequency domain 3-point method after symmetrical continuation of probes' primitive signal. Both straight-going component motion error in machine tools and the profile error in workpiece that is manufactured on this machine can be measured at the same time. The information is available to diagnose the fault origin of machine tools. The analysis result is proved to be correct by the experiment.展开更多
A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is ba...A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.展开更多
Companies like Google, MSN and Yahoo provide translation services on their websites, generating translations based on statistical bilingual text corpora. Human translation seems to be inferior in face of huge amount o...Companies like Google, MSN and Yahoo provide translation services on their websites, generating translations based on statistical bilingual text corpora. Human translation seems to be inferior in face of huge amount of information and fast development of computer science. Despite the functions and versatility of statistical machine translation, it may never take the place of human effort. Teachers are supposed to guide the students in using online translation system.展开更多
In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In additi...In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In addition,HCOUNT + is introduced to time critical applications and a novel sliding windows-based algorithm SL-HCOUNT + is proposed to mine the most frequent items occurring recently.This algorithm uses limited memory (nB · (1 +α) · e/ε·In(-M/lnρ)(α〈1) counters), requires constant processing time per packet (only (1+α) · ln(-M/lnρ(α〈1)) counters are updated), makes only one pass over the streaming data,and is shown to work well in the experimental results.展开更多
This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed ...This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.展开更多
This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online ...This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online sample by sample, instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method is extended from the split-and-merge EM procedure, so inherently it is also capable escaping from local maxima and reducing the chances of singularities. In the application domain, the algorithm is optimized in the context of speech processing applications. Experiments on the synthetic data show the advantage and efficiency of the new method and the results in a speech processing task also confirm the improvement of system performance.展开更多
An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, ...An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, the convergent speed of the on-line control path identification process is significantly improved. As a result, the controller performance is greatly enhanced. Besides the algorithm development, some important factors, such as the influence of reference signal on the controller convergent speed, are also discussed. The effectiveness of the algorithm is verified by experimental results.展开更多
A location and tracking algorithm with NLOS (Non-Line of Sight) errors for MS (Mobile Station) is proposed in this paper. A cellular localization algorithm based on the RON online RBF neural network is proposed. T...A location and tracking algorithm with NLOS (Non-Line of Sight) errors for MS (Mobile Station) is proposed in this paper. A cellular localization algorithm based on the RON online RBF neural network is proposed. The measurement ofAOA, TOA and TDOA provided by mobile base station is fused to locate mobile. The location performance of RON online RBF neural network is simulated. The simulation results indicate that shrink, attenuation, shift or overlapping phenomenon is avoided when the network redundant hidden nodes appear. It' s location accuracy is significantly improved under complicated multi-path environment.展开更多
Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age c...Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age contexts that restrict their ability when they are applied in the current network envi-ronment. For example, the port based ap-proach cannot identify network applications with dynamic ports; the deep packet inspec-tion approach is invalid for encrypted network applications; and the statistical based approach is time-onsuming. In this paper, a novel tech-nique is proposed to classify different catego-ries of network applications. The port based, deep packet inspection based and statistical based approaches are integrated as a multi-stage classifier. The experimental results demonstrate that this approach has high rec-ognition rate which is up to 98% and good performance of real-time for traffic identifica-tion.展开更多
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50875056)
文摘To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21206159)
文摘The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away from the influence of gas diffusion and gas–solid heat transfer and mass transfer, the reaction of Fe2O3 to Fe3O4, Fe3O4 to Fe O and Fe O to Fe in the process of single reaction can be clearly distinguished from each other, and the relevant activation energy is characterized to be 75.4, 74.4, and 84.0 k J·mol-1, respectively. Therefore, the change of surface area in the reaction process due to losing oxygen could be easily calculated by combining it with pre-exponential parameters of Arrhenius equations. In conclusion, these kinetic parameters are verified by the experimental data for the process of ore reduced by carbon monoxide in a packed bed.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation,which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted.Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.
基金Project (No. Y605316) supported by the Natural Science Foundationof Zhejiang Province, China and the Natural Science Foundation of the Education Department of Zhejiang Province (No. 20060578), China
文摘In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated, and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every s≥1.
基金supported by the Flood Control Foundation of Yellow River Conservancy Commissionthe 2007 Key Supporting Project on Undergraduate Graduation Thesis of North-western Polytechnical University.
文摘Mainstream line is significant for the Yellow River situation forecasting and flood control.An effective statistical feature extraction method is proposed in this paper.In this method, a between-class scattering matrix based projection algorithm is performed to maximize between-class differences, obtaining effective component for classification;then high-order statistics are utilized as the features to describe the mainstream line in the principal component obtained.Experiments are performed to verify the applicability of the algorithm.The results both on synthesized and real scenes indicate that this approach could extract the mainstream line of the Yellow River automatically, and has a high precision in mainstream line detection.
基金the State Key Development Program for Basic Research of China(2013CB632601)the National High Technology Research and Development Program of China(2011AA060704)+1 种基金the National Natural Science Foundation of China(21476236,91434126)the National Science Fund for Distinguished Young Scholars(21025627)
文摘The objective of this work is using the online measurement method to study the process of precipitation of nickel hydroxide in a single-feed semi-batch stirred reactor with an internal diameter ofD = 240mm. The effects of impeller speed, impeller type, impeller diameter and feed location on the mean particle size d43 and particle size distribution (PSD) were investigated, d43 and PSD were measured online using a Malvern Insitec Liquid Pro- cess Sizer every 20 s. It was found that d43 varied between 13 kwh and 26 lain under different operating conditions, and it decreased with increasing impeller diameter. When feeding at the off-bottom distance of D/2 under lower impeller speeds, d43 was significantly smaller than that at D/3. PSDs were slightly influenced by operating conditions.
基金the Korea Research Foundation Grant Funded by the Korean Government (MOEHRD) (KRF-2007-331-D00089) Funded by Seoul Development Institute (CS070160)
文摘A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.
文摘The URI online judge is a new online tool created with the main purpose of making programming practice more dynamic, interesting and stimulating for those who have just entered into the art of programming. The URI online judge allows problem corrections in real time, interactivity between users, besides it allows flexibility in the choice of the programming language and it makes some supporting materials available. During the short time in which the tool has being used we have observed that it is a very good tool for self-study. As users of programming portals, the authors noticed some details that would be important to be implemented in a new tool, such as the separation of problems by categories. Another fundamental detail is the fact that this tool is available in two languages (Portuguese and English). This might facilitate the learning process for beginners, both locally and globally.
基金Supported by the National Natural Science Foundation of China (No. 20206028) and the Qingdao Municipal Major Lab of Industry Information Technology.
文摘An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.
基金National Nature Science Foundation of China.No.50075056
文摘Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe method in time domain is put forward to measure straight-going component motion error in machine tools based on the frequency domain 3-point method after symmetrical continuation of probes' primitive signal. Both straight-going component motion error in machine tools and the profile error in workpiece that is manufactured on this machine can be measured at the same time. The information is available to diagnose the fault origin of machine tools. The analysis result is proved to be correct by the experiment.
基金Funded by the National Science and Technology Support Project of China (No. 2006BAA03B02-03)
文摘A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.
文摘Companies like Google, MSN and Yahoo provide translation services on their websites, generating translations based on statistical bilingual text corpora. Human translation seems to be inferior in face of huge amount of information and fast development of computer science. Despite the functions and versatility of statistical machine translation, it may never take the place of human effort. Teachers are supposed to guide the students in using online translation system.
文摘In this paper, a new algorithm HCOUNT + is proposed to find frequent items over data stream based on the HCOUNT algorithm. The new algorithm adopts aided measures to improve the precision of HCOUNT greatly. In addition,HCOUNT + is introduced to time critical applications and a novel sliding windows-based algorithm SL-HCOUNT + is proposed to mine the most frequent items occurring recently.This algorithm uses limited memory (nB · (1 +α) · e/ε·In(-M/lnρ)(α〈1) counters), requires constant processing time per packet (only (1+α) · ln(-M/lnρ(α〈1)) counters are updated), makes only one pass over the streaming data,and is shown to work well in the experimental results.
文摘This paper focuses on a state sharing method for an artificial neural network (ANN) and hidden Markov model (HMM) hybrid on line handwriting recognition system. A modeling precision based distance measure is proposed to describe similarity between two ANNs, which are used as HMM state models. Limiting maximum system performance loss, a minimum quantification error aimed hierarchical clustering algorithm is designed to choose the most representative models. The system performance is improved by about 1.5% while saving 40% of the system expense. About 92% of the performance may also be maintained while reducing 70% of system parameters. The suggested method is quite useful for designing pen based interface for various handheld devices.
文摘This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online sample by sample, instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method is extended from the split-and-merge EM procedure, so inherently it is also capable escaping from local maxima and reducing the chances of singularities. In the application domain, the algorithm is optimized in the context of speech processing applications. Experiments on the synthetic data show the advantage and efficiency of the new method and the results in a speech processing task also confirm the improvement of system performance.
文摘An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, the convergent speed of the on-line control path identification process is significantly improved. As a result, the controller performance is greatly enhanced. Besides the algorithm development, some important factors, such as the influence of reference signal on the controller convergent speed, are also discussed. The effectiveness of the algorithm is verified by experimental results.
文摘A location and tracking algorithm with NLOS (Non-Line of Sight) errors for MS (Mobile Station) is proposed in this paper. A cellular localization algorithm based on the RON online RBF neural network is proposed. The measurement ofAOA, TOA and TDOA provided by mobile base station is fused to locate mobile. The location performance of RON online RBF neural network is simulated. The simulation results indicate that shrink, attenuation, shift or overlapping phenomenon is avoided when the network redundant hidden nodes appear. It' s location accuracy is significantly improved under complicated multi-path environment.
基金supported by the National Key Technology R&D Program under Grant No. 2012BAH18B05
文摘Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age contexts that restrict their ability when they are applied in the current network envi-ronment. For example, the port based ap-proach cannot identify network applications with dynamic ports; the deep packet inspec-tion approach is invalid for encrypted network applications; and the statistical based approach is time-onsuming. In this paper, a novel tech-nique is proposed to classify different catego-ries of network applications. The port based, deep packet inspection based and statistical based approaches are integrated as a multi-stage classifier. The experimental results demonstrate that this approach has high rec-ognition rate which is up to 98% and good performance of real-time for traffic identifica-tion.