The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward...The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950-2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8-27.3 ao, the ACG covers a large area from the Mindanao coast to 131 ~E and from 3~N to 10~N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at -6~N, while the northern ACG (NACG) is centered at -10~N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4-8 years, while the NACG has enhanced power within the 3-5-year band. A lead-lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the E1 Nifio-Southern Oscillation. Possible causes for the ACG variability are discussed.展开更多
Aiming at the storage and management problems of massive remote sensing data,this paper gives a comprehensive analysis of the characteristics and advantages of thirteen data storage centers or systems at home and abro...Aiming at the storage and management problems of massive remote sensing data,this paper gives a comprehensive analysis of the characteristics and advantages of thirteen data storage centers or systems at home and abroad. They mainly include the NASA EOS,World Wind,Google Earth,Google Maps,Bing Maps,Microsoft TerraServer,ESA,Earth Simulator,GeoEye,Map World,China Centre for Resources Satellite Data and Application,National Satellite Meteorological Centre,and National Satellite Ocean Application Service. By summing up the practical data storage and management technologies in terms of remote sensing data storage organization and storage architecture,it will be helpful to seek more suitable techniques and methods for massive remote sensing data storage and management.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11010204)+4 种基金the Pioneer Hundred Talent Program of Chinese Academy of Sciences(No.Y62114101Q)the National Natural Science Foundation of China(NSFC)(Nos.40890152,41330963)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the Global Change and Air-Sea Interaction(No.GASI-03-01-01-05)the NSFC Innovative Group Grant(No.41421005)
文摘The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southem Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950-2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8-27.3 ao, the ACG covers a large area from the Mindanao coast to 131 ~E and from 3~N to 10~N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at -6~N, while the northern ACG (NACG) is centered at -10~N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4-8 years, while the NACG has enhanced power within the 3-5-year band. A lead-lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the E1 Nifio-Southern Oscillation. Possible causes for the ACG variability are discussed.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No.61399)
文摘Aiming at the storage and management problems of massive remote sensing data,this paper gives a comprehensive analysis of the characteristics and advantages of thirteen data storage centers or systems at home and abroad. They mainly include the NASA EOS,World Wind,Google Earth,Google Maps,Bing Maps,Microsoft TerraServer,ESA,Earth Simulator,GeoEye,Map World,China Centre for Resources Satellite Data and Application,National Satellite Meteorological Centre,and National Satellite Ocean Application Service. By summing up the practical data storage and management technologies in terms of remote sensing data storage organization and storage architecture,it will be helpful to seek more suitable techniques and methods for massive remote sensing data storage and management.