A novel dual output phase-shift distribution transformer ( DOPSDT ) is proposed based on the electromagnetic filtering theory. First, its structural characteristics, winding connection mode and turn number ratio for...A novel dual output phase-shift distribution transformer ( DOPSDT ) is proposed based on the electromagnetic filtering theory. First, its structural characteristics, winding connection mode and turn number ratio for special phase shifting are investigated. Secondly, the balance formulation of harmonic magneto-motive forces is derived and the electromagnetic filtering principle of the DOPSDT is introduced. The harmonic mitigating performance under different nonlinear load conditions are also analyzed using the field-circuit coupled method, The analysis results show that the DOPSDT can mitigate the primary current distortion even under severe nonlinear load conditions. By applying the zero sequence flux cancellation and phase-shift techniques at their secondary windings, the DOPSDT can significantly reduce the 3rd, 5th, 7th, 9th, 15th, 17th and 19th harmonics within its secondary windings.展开更多
In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power sys...In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.展开更多
Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affec...Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.展开更多
基金The Program for Special Talent in Six Fields of Jiangsu Province (2011-ZBZZ-016)the Postdoctoral Science Foundation of Jiangsu Province (No. 0902038C)
文摘A novel dual output phase-shift distribution transformer ( DOPSDT ) is proposed based on the electromagnetic filtering theory. First, its structural characteristics, winding connection mode and turn number ratio for special phase shifting are investigated. Secondly, the balance formulation of harmonic magneto-motive forces is derived and the electromagnetic filtering principle of the DOPSDT is introduced. The harmonic mitigating performance under different nonlinear load conditions are also analyzed using the field-circuit coupled method, The analysis results show that the DOPSDT can mitigate the primary current distortion even under severe nonlinear load conditions. By applying the zero sequence flux cancellation and phase-shift techniques at their secondary windings, the DOPSDT can significantly reduce the 3rd, 5th, 7th, 9th, 15th, 17th and 19th harmonics within its secondary windings.
基金Project supported by the National Natural Science Foundation of China (No. 50477030) the Natural Science Foundation of Zheji-ang Province (No. Y105351), China
文摘In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.
基金funded by National Natural Science Foundation of China(Grant No.51279219 and Grant No.51609027)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2016jcyj A0016)
文摘Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.