The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the...The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.展开更多
Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be o...Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.展开更多
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy ...The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method展开更多
In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the un...In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.展开更多
Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eige...Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.展开更多
Tensile stress-strain curves of five metallic alloys,i.e.,SKH51,STS316L,Ti-6Al-4V,Al6061and Inconel600were analyzed to investigate the working hardening behavior.The constitutive parameters of three constitutive equat...Tensile stress-strain curves of five metallic alloys,i.e.,SKH51,STS316L,Ti-6Al-4V,Al6061and Inconel600were analyzed to investigate the working hardening behavior.The constitutive parameters of three constitutive equations,i.e.,the Hollomon,Swift and Voce equations,were compared by using different methods.A new working hardening parameter was proposed to characterize the working hardening behavior in different deformation stages.It is found that Voce equation is suitable to describe stress-strain curves in large strain region.Meanwhile,the predicting accuracy of ultimate tensile strength by Voce equation is the best.The working hardening behavior of SKH51is different from the other four metallic alloys.展开更多
A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordi...A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordinate transformation matrix,gravity stability and its obstacle performance are analyzed.Its gravity equation and climbing obstacle conditions are established.Experimental results show that this hybrid mobile robot could fully possess the advantages of both the wheel and the track mechanisms and achieve a good obstacle climbing capability.展开更多
For an exponentially position-dependent mass, we obtain the exact solutionsof the three-dimensional Schrodinger equation by using coordinate transformation method for thereference problems with Coulomb potential, Krat...For an exponentially position-dependent mass, we obtain the exact solutionsof the three-dimensional Schrodinger equation by using coordinate transformation method for thereference problems with Coulomb potential, Kratzer potential, and spherically square potential wellof infinite depth, respectively. The explicit expressions for the energy eigenvalues and thecorresponding eigenfunctions of the three systems are presented.展开更多
Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome t...Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.展开更多
In the present study, we are interested in finding the spin precession of a Dirac particle in expanding and rotating NUT spaeetime. A tetrad with two functions to be determined is applied to the field equation of the ...In the present study, we are interested in finding the spin precession of a Dirac particle in expanding and rotating NUT spaeetime. A tetrad with two functions to be determined is applied to the field equation of the teleparallel theory of gravity via a coordinate transformation. The vector, the axial-vector and the tensor parts of the torsion tensor are obtained. We found that the vector parts are in the radial and Ф-directions. The axial-vector torsion is along r-direction while its other components along θ and oh-directions vanish everywhere. The vector connected with Dirac spin has been evaluated as well.展开更多
The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a cu...The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.展开更多
A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanic...A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.展开更多
The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes,...The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes, and the dimensional problem in the circle due to several variation sources accumulation has no adjustment. The active error compensating welding fixture system for auto body is designed and manufactured. The detecting model, coordinate transformation model, and adjusting model based on auto body coordinate system are presented. The dowel pin modular design is adopted in the structure of the fixture to suit different workpieces with some similar characteristics. The online detection and adaptive control system using eddy current sensors and adaptive adjusting devices is analyzed. Three kinds of the left rear wheel covers SGM60 are selected to test workpieces of the developed system, and the active error compensating experiments are performed in the lab for many times. Test results show the validity of mechanism reconfigurations, on-line detections and error compensations of the developed welding fixture.展开更多
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar...The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.展开更多
In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coo...In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coordinate transformation. Once equivalent medium parameters are obtained so as to keep the invariance, wave rays can be arbitrarily designed. We show the design of equivalent medium for wave squeezing to focus waves on a specific domain. Numerical computations are carried out by a finite element based software COMSOL Multiphysics. Results show good agreement between predictions from the theory and computations. It can be applied for a wide range of frequency because the proposed method is able to be applied regardless of the frequency.展开更多
In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. Accor...In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. According to the viewpoint of Hamiltonian mechanics, the Euler-Lagrange equations and the Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system is obtained. Moreover, by means of the constrained conditions between the potentiaJ u, v and the eigenfunction φ, the involutive representations of the solutions for the Boussinesq equation hieraxchy axe given.展开更多
Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations...Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.展开更多
Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase a...Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.41104069 and 41274124)the National 973 Project(Nos.2014CB239006 and 2011CB202402)+1 种基金the Shandong Natural Science Foundation of China(No.ZR2011DQ016)Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.
基金supported by the National Natural Science Foundation of China (Grant No. 40974073)the National 863 Program (Grant No.2007AA060504)the National 973 Program (Grant No. 2007CB209605) and CNPC Geophysical Laboratories
文摘Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
文摘The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method
基金Supported by the National Natural Science Foundation of China(No.51105273)
文摘In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.
文摘Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(3102015BJ(Ⅱ)ZS007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Tensile stress-strain curves of five metallic alloys,i.e.,SKH51,STS316L,Ti-6Al-4V,Al6061and Inconel600were analyzed to investigate the working hardening behavior.The constitutive parameters of three constitutive equations,i.e.,the Hollomon,Swift and Voce equations,were compared by using different methods.A new working hardening parameter was proposed to characterize the working hardening behavior in different deformation stages.It is found that Voce equation is suitable to describe stress-strain curves in large strain region.Meanwhile,the predicting accuracy of ultimate tensile strength by Voce equation is the best.The working hardening behavior of SKH51is different from the other four metallic alloys.
基金Supported by the National Natural Science Foundation of China(No.61175069,51075272,51475300)
文摘A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordinate transformation matrix,gravity stability and its obstacle performance are analyzed.Its gravity equation and climbing obstacle conditions are established.Experimental results show that this hybrid mobile robot could fully possess the advantages of both the wheel and the track mechanisms and achieve a good obstacle climbing capability.
基金The project supported by National Natural Science Foundation for Outstanding Young Scientists of China under Grant No. 10125521Fund of the Education Ministry of China under Grant No. 20010284036, the State Key Research Program of China under Grant N
文摘For an exponentially position-dependent mass, we obtain the exact solutionsof the three-dimensional Schrodinger equation by using coordinate transformation method for thereference problems with Coulomb potential, Kratzer potential, and spherically square potential wellof infinite depth, respectively. The explicit expressions for the energy eigenvalues and thecorresponding eigenfunctions of the three systems are presented.
基金State Administration of Science,Technology and Industry for the National Defense(No.JSJL2014206B001)。
文摘Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.
文摘In the present study, we are interested in finding the spin precession of a Dirac particle in expanding and rotating NUT spaeetime. A tetrad with two functions to be determined is applied to the field equation of the teleparallel theory of gravity via a coordinate transformation. The vector, the axial-vector and the tensor parts of the torsion tensor are obtained. We found that the vector parts are in the radial and Ф-directions. The axial-vector torsion is along r-direction while its other components along θ and oh-directions vanish everywhere. The vector connected with Dirac spin has been evaluated as well.
基金Project(51507188)supported by the National Natural Science Foundation of China
文摘The vector control algorithm based on vector space decomposition (VSD) transformation method has a more flexible control freedom, which can control the fundamental and harmonic subspace separately. To this end, a current vector decoupling control algorithm for six-phase permanent magnet synchronous motor (PMSM) is designed. Using the proposed synchronous rotating coordinate transformation matrix, the fundamental and harmonic components in d-q subspace are changed into direct current (DC) component, only using the traditional proportional integral (PI) controller can meet the non-static difference adjustment, and the controller parameter design method is given by employing intemal model principle. In addition, in order to remove the 5th and 7th harmonic components of stator current, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific harmonic component compensation. Simulation results verify the effectiveness of current decoupling vector controller.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975059)the National High-Tech Research and Development Program of China(863 Program)(Grant No.2006AA04Z231)+1 种基金the College Discipline Innovation Wisdom Plan(Grant No.B07018)Development Program of the Excellent Youth Scholars of Harbin Institute of Technology(Grant No.CACZ98504837)
文摘A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.
基金Shanghai Leading Academic Discipline Project,China(No.B602)Patent Second Development Project of Science and Technology Commission of Shanghai Municipality,China(No.05dz52038)
文摘The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes, and the dimensional problem in the circle due to several variation sources accumulation has no adjustment. The active error compensating welding fixture system for auto body is designed and manufactured. The detecting model, coordinate transformation model, and adjusting model based on auto body coordinate system are presented. The dowel pin modular design is adopted in the structure of the fixture to suit different workpieces with some similar characteristics. The online detection and adaptive control system using eddy current sensors and adaptive adjusting devices is analyzed. Three kinds of the left rear wheel covers SGM60 are selected to test workpieces of the developed system, and the active error compensating experiments are performed in the lab for many times. Test results show the validity of mechanism reconfigurations, on-line detections and error compensations of the developed welding fixture.
基金Supported by National Natural Science Foundation of China (No10872141)Doctoral Foundation of Ministry of Education of China (No20060056005)Natural Science Foundation of Tianjin University of Science and Technology (No20070210)
文摘The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.
文摘In this paper, wave focusing based on a coordinate transformation is proposed. It is known that the 2-dimensional wave equation which governs a shallow water problem in a potential theory can keep invariance under coordinate transformation. Once equivalent medium parameters are obtained so as to keep the invariance, wave rays can be arbitrarily designed. We show the design of equivalent medium for wave squeezing to focus waves on a specific domain. Numerical computations are carried out by a finite element based software COMSOL Multiphysics. Results show good agreement between predictions from the theory and computations. It can be applied for a wide range of frequency because the proposed method is able to be applied regardless of the frequency.
文摘In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. According to the viewpoint of Hamiltonian mechanics, the Euler-Lagrange equations and the Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system is obtained. Moreover, by means of the constrained conditions between the potentiaJ u, v and the eigenfunction φ, the involutive representations of the solutions for the Boussinesq equation hieraxchy axe given.
基金the Aeronautical Foundation of China(Grant No.2015ZA51013)the National Natural Science Foundation of China(Grant No.61673327)
文摘Recognizing the target from a rotated and scaled image is an important and difficult task for computer vision. Visual system of humans has a unique space variant resolution mechanism(SVR) and log-polar transformations(LPT) is a mapping method that is invariant to rotation and scale. Motivated by biological vision, we propose a novel global LPT based template-matching algorithm(GLPT-TM) which is invariant to rotational and scale changes; and with pigeon-inspired optimization(PIO) used to optimize search strategy, a hybrid model of SVR and pigeon-inspired optimization(SVRPIO) is proposed to accomplish object recognition for unmanned aerial vehicles(UAV) with rotational and scale changes of the target. To demonstrate the efficiency, effectiveness and reliability of the proposed method, a series of experiments are carried out. By rotating and scaling the sample image randomly and recognizing the target with the method, the experimental results demonstrate that our proposed method is not only efficient due to the optimization, but effective and accurate in recognizing the target for UAV.
基金supported by the China National Funds for Distinguished Young Scientists (Grant No.61025006)
文摘Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.