Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Objective To investigate the protective effects of naringenin(NRG)against dexamethasone(DEX)-induced osteoporosis(OP)in rats.Methods Molecular docking of NRG was done with AutoDock Vina 1.2.0 software.Forty-eight fema...Objective To investigate the protective effects of naringenin(NRG)against dexamethasone(DEX)-induced osteoporosis(OP)in rats.Methods Molecular docking of NRG was done with AutoDock Vina 1.2.0 software.Forty-eight female Wistar rats were randomly divided into six groups(n=8 each):normal control(NC),DEX(7 mg/kg,i.m.),NRG-low(NRG-L;25 mg/kg,i.g.),NRG-medium(NRG-M;50 mg/kg,i.g.),NRG-high(NRG-H;100 mg/kg,i.g.),and alendronate(ALN;0.25 mg/d,i.g.)groups.OP was induced by administering DEX once a week for five weeks in all groups except NC group.Begining in the third week after the initial DEX administration,the rats in NRG-L,NRG-M,NRG-H,and ALN groups received the corresponding treatments daily for three weeks,while NC and DEX groups received no additional treatment.Serum samples were collected at the end of the experiment for biochemical,bone turnover,antioxidant,lipid profile,and inflammatory cytokine analyses.Femur bones underwent physical parameter testing and histopathological examination.Results The molecular docking results illustrated that NRG docked with calcitonin(CT),lowdensity lipoprotein(LDL),bone morphogenetic protein(BMP),vascular endothelial growth factor(VEGF)receptor,forkhead transcription factors,and osteoprogenitor cells showed good binding energy.In rats administered with 25,50,and 100 mg/kg NRG,there was a significant enhancement in serum biochemical indices,characterized by a reduction in tartrate-resistant acid phosphatase(TRAP),parathyroid hormone(PTH),and an elevation in osteocalcin(OC)and CT levels(P<0.05,P<0.01,and P<0.001,respectively).Despite no significant changes in thickness,weight,and length(P>0.05),there was a marked increase in bone mineral density(BMD)(P<0.01,P<0.001,and P<0.001,respectively).Antioxidant enzyme markers showed significant upregulation,with higher glutathione,superoxide dismutase,and catalase,and a concurrent decrease in malondialdehyde(MDA)(P<0.05,P<0.01,and P<0.001,respectively).The lipid profile also improved significantly,with lower cholesterol(CH),triglycerides(TG),and low-density lipoprotein(LDL)levels,and an increase in high-density lipoprotein(HDL)level(P<0.05,P<0.01,and P<0.001,respectively).Inflammatory cytokine levels were reduced,as evidenced by decreases in tumor necrosis factor(TNF),interleukin(IL)-6,and IL-1β(P<0.05,P<0.01,and P<0.001,respectively).Furthermore,histological alterations revealed obvious improvements,and the body weight of rats treated with NRG showed an increase compared with DEX group.Conclusion These findings imply that NRG exhibited a protective effect against DEX-induced OP in rats as it promotes the bone formation process by increasing the number of bone turnover markers including OC and CT,and restoring of antioxidant status,lipid metabolism,and inflammatory markers.展开更多
Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 16...Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 162 AECOPD patients with elevated eosinophils were retrospectively analyzed.The patients were divided into low EOS group(n=105)and high EOS group(n=57)according to the absolute counting of blood EOS.The quantitative CT parameters,including the number of whole lung bronchi and the volume of blood vessels,low-attenuation area percentage(LAA%)of whole lung,of left/right lung and each lobe of lung,as well as the luminal diameter(LD),wall thickness(WT),wall area(WA)and WA percentage of total bronchial cross-section(WA%)of grade 3 to 8 bronchi were compared between groups.Spearman correlations were performed to analyze the correlations of quantitative CT parameters with blood EOS level.Results LAA%of the whole lung,of the left/right lung and each lobe of lung,as well as of the upper lobe of right lung LD grade 4,middle lobe of right lung WT grade 5,upper lobe of right lung WA grade 4,middle lobe of right lung WA grade 5 and lower lobe of left lung WA grade 3 in low EOS group were all higher than those in high EOS group(all P<0.05).Except for the upper lobe of right lung LD grade 4,the above quantitative CT indexes being significant different between groups were all weakly and negatively correlated with blood EOS level(r=-0.335 to-0.164,all P<0.05).Conclusion Chest CT quantitative parameters of AECOPD patients were correlated with blood EOS level,among which LAA%,a part of WT and WA were all weakly negatively correlated with blood EOS level.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
文摘Objective To investigate the protective effects of naringenin(NRG)against dexamethasone(DEX)-induced osteoporosis(OP)in rats.Methods Molecular docking of NRG was done with AutoDock Vina 1.2.0 software.Forty-eight female Wistar rats were randomly divided into six groups(n=8 each):normal control(NC),DEX(7 mg/kg,i.m.),NRG-low(NRG-L;25 mg/kg,i.g.),NRG-medium(NRG-M;50 mg/kg,i.g.),NRG-high(NRG-H;100 mg/kg,i.g.),and alendronate(ALN;0.25 mg/d,i.g.)groups.OP was induced by administering DEX once a week for five weeks in all groups except NC group.Begining in the third week after the initial DEX administration,the rats in NRG-L,NRG-M,NRG-H,and ALN groups received the corresponding treatments daily for three weeks,while NC and DEX groups received no additional treatment.Serum samples were collected at the end of the experiment for biochemical,bone turnover,antioxidant,lipid profile,and inflammatory cytokine analyses.Femur bones underwent physical parameter testing and histopathological examination.Results The molecular docking results illustrated that NRG docked with calcitonin(CT),lowdensity lipoprotein(LDL),bone morphogenetic protein(BMP),vascular endothelial growth factor(VEGF)receptor,forkhead transcription factors,and osteoprogenitor cells showed good binding energy.In rats administered with 25,50,and 100 mg/kg NRG,there was a significant enhancement in serum biochemical indices,characterized by a reduction in tartrate-resistant acid phosphatase(TRAP),parathyroid hormone(PTH),and an elevation in osteocalcin(OC)and CT levels(P<0.05,P<0.01,and P<0.001,respectively).Despite no significant changes in thickness,weight,and length(P>0.05),there was a marked increase in bone mineral density(BMD)(P<0.01,P<0.001,and P<0.001,respectively).Antioxidant enzyme markers showed significant upregulation,with higher glutathione,superoxide dismutase,and catalase,and a concurrent decrease in malondialdehyde(MDA)(P<0.05,P<0.01,and P<0.001,respectively).The lipid profile also improved significantly,with lower cholesterol(CH),triglycerides(TG),and low-density lipoprotein(LDL)levels,and an increase in high-density lipoprotein(HDL)level(P<0.05,P<0.01,and P<0.001,respectively).Inflammatory cytokine levels were reduced,as evidenced by decreases in tumor necrosis factor(TNF),interleukin(IL)-6,and IL-1β(P<0.05,P<0.01,and P<0.001,respectively).Furthermore,histological alterations revealed obvious improvements,and the body weight of rats treated with NRG showed an increase compared with DEX group.Conclusion These findings imply that NRG exhibited a protective effect against DEX-induced OP in rats as it promotes the bone formation process by increasing the number of bone turnover markers including OC and CT,and restoring of antioxidant status,lipid metabolism,and inflammatory markers.
文摘Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 162 AECOPD patients with elevated eosinophils were retrospectively analyzed.The patients were divided into low EOS group(n=105)and high EOS group(n=57)according to the absolute counting of blood EOS.The quantitative CT parameters,including the number of whole lung bronchi and the volume of blood vessels,low-attenuation area percentage(LAA%)of whole lung,of left/right lung and each lobe of lung,as well as the luminal diameter(LD),wall thickness(WT),wall area(WA)and WA percentage of total bronchial cross-section(WA%)of grade 3 to 8 bronchi were compared between groups.Spearman correlations were performed to analyze the correlations of quantitative CT parameters with blood EOS level.Results LAA%of the whole lung,of the left/right lung and each lobe of lung,as well as of the upper lobe of right lung LD grade 4,middle lobe of right lung WT grade 5,upper lobe of right lung WA grade 4,middle lobe of right lung WA grade 5 and lower lobe of left lung WA grade 3 in low EOS group were all higher than those in high EOS group(all P<0.05).Except for the upper lobe of right lung LD grade 4,the above quantitative CT indexes being significant different between groups were all weakly and negatively correlated with blood EOS level(r=-0.335 to-0.164,all P<0.05).Conclusion Chest CT quantitative parameters of AECOPD patients were correlated with blood EOS level,among which LAA%,a part of WT and WA were all weakly negatively correlated with blood EOS level.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.