In the developing phase of typhoon formation, the spiral belt partly emerges in satellite cloud images. This research starts from images and moves on to graphics and then to representation and recognition. Following t...In the developing phase of typhoon formation, the spiral belt partly emerges in satellite cloud images. This research starts from images and moves on to graphics and then to representation and recognition. Following this route, local spiral cloud belt is segmented from the raw images using image segmentation, the spiral information is extracted using mathematic morphology, and local spiral curves are detected using Hough transformation. The problem of center locating of developing typhoon has finally been solved through a search algorithm of spiral curve. For No. 99082008 cloud image, the result produced by the algorithm in this paper is at 122..3 degree west longitude, 117.5 degree north latitude. The real typhoon center location was at 122.4 degree west longitude, 18 degree north latitude.展开更多
In the study of the application of MODIS satellite remote sensing data to earthquake prediction, the paper puts forward for the first time a quantitative method to estimate the ratio for the pixels with abnormal brigh...In the study of the application of MODIS satellite remote sensing data to earthquake prediction, the paper puts forward for the first time a quantitative method to estimate the ratio for the pixels with abnormal brightness temperature (BT) increase and a preliminary scheme for cloud removal. The principle is that, firstly, the cloudless data observed by the same satellite at the same period of time but in different days (usually 1 day to 3 days) are mosaiced to get high ratio of clear sky, and then the BT variation curve and mean square difference (MSD) of each pixel are calculated with the data from the covered area to determine daily whether the BT data of the day is normal or not at a certain pixel by using double the MSD as the criterion. The ratio for the pixels with abnormal BT increase can be calculated by dividing the total number of abnormal pixels with the total pixels of the whole area. Analysis on a series of recent earthquakes in the Taiwan Region shows that the ratio for pixels with abnormal BT increase, which normally undulates around zero, has a sudden enhancement 1 day to 20 days before medium-strong earthquakes. It is expected that a new method for identifying earthquake auspice could be found through special studies in regions with frequent seismic activity by analyzing the change of the ratio for the pixels with abnormal BT increase from MODIS satellite remote sensing infrared (IR) information from which the effect of clouds has been removed to a certain extent.展开更多
文摘In the developing phase of typhoon formation, the spiral belt partly emerges in satellite cloud images. This research starts from images and moves on to graphics and then to representation and recognition. Following this route, local spiral cloud belt is segmented from the raw images using image segmentation, the spiral information is extracted using mathematic morphology, and local spiral curves are detected using Hough transformation. The problem of center locating of developing typhoon has finally been solved through a search algorithm of spiral curve. For No. 99082008 cloud image, the result produced by the algorithm in this paper is at 122..3 degree west longitude, 117.5 degree north latitude. The real typhoon center location was at 122.4 degree west longitude, 18 degree north latitude.
基金This project was sponsored by the Science and Technology Programof Sichuan Province (05SG031-004)
文摘In the study of the application of MODIS satellite remote sensing data to earthquake prediction, the paper puts forward for the first time a quantitative method to estimate the ratio for the pixels with abnormal brightness temperature (BT) increase and a preliminary scheme for cloud removal. The principle is that, firstly, the cloudless data observed by the same satellite at the same period of time but in different days (usually 1 day to 3 days) are mosaiced to get high ratio of clear sky, and then the BT variation curve and mean square difference (MSD) of each pixel are calculated with the data from the covered area to determine daily whether the BT data of the day is normal or not at a certain pixel by using double the MSD as the criterion. The ratio for the pixels with abnormal BT increase can be calculated by dividing the total number of abnormal pixels with the total pixels of the whole area. Analysis on a series of recent earthquakes in the Taiwan Region shows that the ratio for pixels with abnormal BT increase, which normally undulates around zero, has a sudden enhancement 1 day to 20 days before medium-strong earthquakes. It is expected that a new method for identifying earthquake auspice could be found through special studies in regions with frequent seismic activity by analyzing the change of the ratio for the pixels with abnormal BT increase from MODIS satellite remote sensing infrared (IR) information from which the effect of clouds has been removed to a certain extent.