The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the mai...The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the main determinant of MEE. In this study, we improved the method of estimating MEE with MODIS and NECP data, by refining temperature laps rate, and dividing MBE plots, and then analyzed the spatio-temporal variation of MEE in the Plateau. The main conclusions include: 1) the highest average annual MEE of the plateau is as high as 11.5488°C in the southwest of the plateau, where exists a high-MEE core and MEE takes on a trend of decreasing from the core to the surrounding areas; 2) in the interior of the plateau, the maximum monthly MEE is 14.1108°C in the highest MBE plot(4934 m) in August; while the minimum monthly MEE appeared primarily in January and February; 3) in the peripheral areas of the plateau, annual mean MEE is relatively low, mostly between 3.0068°C–5.1972°C, where monthly MEE is high in January and December and low in June and July, completely different from the MEE time-series variation in the internal parts of the plateau.展开更多
Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass trans...Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures(60,70, …, 110 ℃). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were determined by using the Dincer and Dost model. The diffusivity values varied from1.1103 × 10^-10m^2·s^-1to 4.1397 × 10^-10m^2·s^-1 and mass transfer coefficient varied in the range of 2.6433 × 10^-7–8.7203 × 10^-7m·s^-1. The activation energy was obtained to be 27.86 kJ·mol^-1. The quality assessment results showed that the total crocin content increased, when the temperature increased up to90 ℃ but, in higher temperatures, the amount of crocin decreased slightly. The total safranal content of the samples decreased slightly when drying temperature increased from 60 ℃ to 70 ℃ and then continuously increased up to 110 ℃. Also, the amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 ℃ to 100 ℃.展开更多
The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test r...The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.展开更多
It is a sunny,early-spring morning,and three foreign students from different countries have just arrived at the new Tibet University campus.Linda I Am Pema Metok from Northern TibetFrom the very end of the foreign stu...It is a sunny,early-spring morning,and three foreign students from different countries have just arrived at the new Tibet University campus.Linda I Am Pema Metok from Northern TibetFrom the very end of the foreign student dormitory building comes one student in front of the others,and that is Linda from Indonesia.On the classroom’s blackboard,展开更多
Highland barley is an important staple food in the Tibet,and the Tibetan Plateau is experiencing obvious climatic warming.However,few studies have examined the warming effects on highland barley growth and biomass all...Highland barley is an important staple food in the Tibet,and the Tibetan Plateau is experiencing obvious climatic warming.However,few studies have examined the warming effects on highland barley growth and biomass allocation under conditions of controlled experimental warming.This limits our ability to predict how highland barley will change as the climate changes in the future.An experiment of field warming at two magnitudes was performed in a highland barley system of the Tibet beginning in late May,2014.Infrared heaters were used to increase soil temperature.At the end of the warming experiment(September 14,2014),plant growth parameters(plant height,basal diameter,shoot length and leaf number),biomass accumulation parameters(total biomass,root biomass,stem biomass,leaf biomass and spike biomass),and carbon and nitrogen concentration parameters(carbon concentration,nitrogen concentration,the ratio of carbon to nitrogen concentration in root,stem,leaf and spike)were sampled.The low-and high-level experimental warming significantly increased soil perimental warming did not significantly change.The low-and high-level experimental warming did not significantly affect plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters.There were also no significant differences of plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters between the low-and high-level experimental warming.Our findings suggest that the response of highland barley growth,total and component biomass accumulation,and carbon and nitrogen concentration to warming did not linearly change with warming magnitude in the Tibet.展开更多
Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin ...Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin of the Tibetan Plateau.The model considered the impacts of both external and internal conditions, including mantle convection, gravitational potential energy and block interactions. We compared the simulated surface movement rates to the observed GPS velocities, and the results revealed that crustal movement gradually decreased toward the edge of the plateau. The factors controlling this pattern are the interactions of adjacent blocks, gravitational potential energy of the plateau, and also mantle convection as well. Additionally,according to the observation that there was an apparent difference between the horizontal movement rate of the lithosphere and convective velocity of the underlying mantle, and also based on the results of seismic anisotropy studies that suggest different strengths and deformation regimes of the lithosphere in different tectonic blocks, we proposed that the impact of mantle convection on the lithosphere may have varied in space, and introduced a parameter named mantle convection intensity factor in numerical simulations. Our simulation results show consistent surface movement rates with GPS observations, which further supports the viewpoint of seismic anisotropy studies, i.e., the degree of coupling between the crust and mantle varies significantly among different blocks.展开更多
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high ...The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.展开更多
基金supported by the Natural Science Foundation of China (Grant Nos.41401111 and 41601091)
文摘The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the main determinant of MEE. In this study, we improved the method of estimating MEE with MODIS and NECP data, by refining temperature laps rate, and dividing MBE plots, and then analyzed the spatio-temporal variation of MEE in the Plateau. The main conclusions include: 1) the highest average annual MEE of the plateau is as high as 11.5488°C in the southwest of the plateau, where exists a high-MEE core and MEE takes on a trend of decreasing from the core to the surrounding areas; 2) in the interior of the plateau, the maximum monthly MEE is 14.1108°C in the highest MBE plot(4934 m) in August; while the minimum monthly MEE appeared primarily in January and February; 3) in the peripheral areas of the plateau, annual mean MEE is relatively low, mostly between 3.0068°C–5.1972°C, where monthly MEE is high in January and December and low in June and July, completely different from the MEE time-series variation in the internal parts of the plateau.
文摘Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures(60,70, …, 110 ℃). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were determined by using the Dincer and Dost model. The diffusivity values varied from1.1103 × 10^-10m^2·s^-1to 4.1397 × 10^-10m^2·s^-1 and mass transfer coefficient varied in the range of 2.6433 × 10^-7–8.7203 × 10^-7m·s^-1. The activation energy was obtained to be 27.86 kJ·mol^-1. The quality assessment results showed that the total crocin content increased, when the temperature increased up to90 ℃ but, in higher temperatures, the amount of crocin decreased slightly. The total safranal content of the samples decreased slightly when drying temperature increased from 60 ℃ to 70 ℃ and then continuously increased up to 110 ℃. Also, the amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 ℃ to 100 ℃.
基金Project(50674102) supported by the National Natural Science Foundation of China
文摘The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.
文摘It is a sunny,early-spring morning,and three foreign students from different countries have just arrived at the new Tibet University campus.Linda I Am Pema Metok from Northern TibetFrom the very end of the foreign student dormitory building comes one student in front of the others,and that is Linda from Indonesia.On the classroom’s blackboard,
基金The National Natural Science Foundation of China(31370458,41171084)the Youth Innovation Research Team Project of Key Laboratory of Ecosystem Network Observation and Modeling(LENOM2016Q0002)+3 种基金the Science and Technology Service Network Plan of Chinese Academy of Science(KFJ-EW-STS-070)the Science and Technology Plan Projects of Tibet Autonomous Region(Forage Grass Industry)the National Key Research and Development Plan of China(2016YFC05020052016YFC0502006)
文摘Highland barley is an important staple food in the Tibet,and the Tibetan Plateau is experiencing obvious climatic warming.However,few studies have examined the warming effects on highland barley growth and biomass allocation under conditions of controlled experimental warming.This limits our ability to predict how highland barley will change as the climate changes in the future.An experiment of field warming at two magnitudes was performed in a highland barley system of the Tibet beginning in late May,2014.Infrared heaters were used to increase soil temperature.At the end of the warming experiment(September 14,2014),plant growth parameters(plant height,basal diameter,shoot length and leaf number),biomass accumulation parameters(total biomass,root biomass,stem biomass,leaf biomass and spike biomass),and carbon and nitrogen concentration parameters(carbon concentration,nitrogen concentration,the ratio of carbon to nitrogen concentration in root,stem,leaf and spike)were sampled.The low-and high-level experimental warming significantly increased soil perimental warming did not significantly change.The low-and high-level experimental warming did not significantly affect plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters.There were also no significant differences of plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters between the low-and high-level experimental warming.Our findings suggest that the response of highland barley growth,total and component biomass accumulation,and carbon and nitrogen concentration to warming did not linearly change with warming magnitude in the Tibet.
基金supported by the National Natural Science Foundation of China (Grant No. 41504079)the China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201308011)
文摘Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin of the Tibetan Plateau.The model considered the impacts of both external and internal conditions, including mantle convection, gravitational potential energy and block interactions. We compared the simulated surface movement rates to the observed GPS velocities, and the results revealed that crustal movement gradually decreased toward the edge of the plateau. The factors controlling this pattern are the interactions of adjacent blocks, gravitational potential energy of the plateau, and also mantle convection as well. Additionally,according to the observation that there was an apparent difference between the horizontal movement rate of the lithosphere and convective velocity of the underlying mantle, and also based on the results of seismic anisotropy studies that suggest different strengths and deformation regimes of the lithosphere in different tectonic blocks, we proposed that the impact of mantle convection on the lithosphere may have varied in space, and introduced a parameter named mantle convection intensity factor in numerical simulations. Our simulation results show consistent surface movement rates with GPS observations, which further supports the viewpoint of seismic anisotropy studies, i.e., the degree of coupling between the crust and mantle varies significantly among different blocks.
基金supported by the Special Projects of Scientific Research of the Earthquake Industry (Grant No. 201408023)the National Natural Science Foundation of China (Grant Nos. 41474076 & 41474077)
文摘The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.