Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were ...Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.展开更多
This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabe...This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabean composite flours were mixed in gram of six combinations as follows millet and soyabean (A) = 100:0, millet and soyabean (B) = 90:10, millet and soyabean (C) = 80:20, millet and soyabean (D) = 70:30, millet and soyabean (E) = 60:40, millet and soyabean (F) = 50:50 and subjected to natural fermentation for 72 h. The following bacteria isolates were obtained from the fermentation; Lacobacillus fermentum, L. acidophilus, L. bulgaricus, L. plantarum, L. dextranicum, L. rhamnosus, L. delbrueckii, L. leichemanii, L. divergens, L. reuteri, L. jenseni, L. casei, L. salivarius, L. cellubiosus, Leuconostoc mesenteroide and Pediococcus acidilactis, of which L. plantarum was the most dominant the throughout the period of fermentation. There was decrease in pH with increase in TTA in all the samples. The result of the proximate analysis revealed a marginal increase in crude protein content of each sample (from 44.41 to 63.14, from 11.02 to 24.02, from 16.64 to 23.10, from 20.83 to 26.93, from 25.43 to 30.12, 39.12 to 35.86 and from 40.66 to 54.24%) There was increase in ash content and decrease in carbohydrate, fibre and fat contents of the fermented samples. Results from this research also show significant reduction in anti-nutritional content which are hydrogen cyanide, oxalate and phytate. Fermentation has modified the microbial and nutritional quality of the millet and soyabean blend and this has greatly improved the nutrient content of the blend.展开更多
文摘Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.
文摘This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabean composite flours were mixed in gram of six combinations as follows millet and soyabean (A) = 100:0, millet and soyabean (B) = 90:10, millet and soyabean (C) = 80:20, millet and soyabean (D) = 70:30, millet and soyabean (E) = 60:40, millet and soyabean (F) = 50:50 and subjected to natural fermentation for 72 h. The following bacteria isolates were obtained from the fermentation; Lacobacillus fermentum, L. acidophilus, L. bulgaricus, L. plantarum, L. dextranicum, L. rhamnosus, L. delbrueckii, L. leichemanii, L. divergens, L. reuteri, L. jenseni, L. casei, L. salivarius, L. cellubiosus, Leuconostoc mesenteroide and Pediococcus acidilactis, of which L. plantarum was the most dominant the throughout the period of fermentation. There was decrease in pH with increase in TTA in all the samples. The result of the proximate analysis revealed a marginal increase in crude protein content of each sample (from 44.41 to 63.14, from 11.02 to 24.02, from 16.64 to 23.10, from 20.83 to 26.93, from 25.43 to 30.12, 39.12 to 35.86 and from 40.66 to 54.24%) There was increase in ash content and decrease in carbohydrate, fibre and fat contents of the fermented samples. Results from this research also show significant reduction in anti-nutritional content which are hydrogen cyanide, oxalate and phytate. Fermentation has modified the microbial and nutritional quality of the millet and soyabean blend and this has greatly improved the nutrient content of the blend.