Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is found that they are both complex networks with features of small-world and scale-free, but with special properties. Ex...Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is found that they are both complex networks with features of small-world and scale-free, but with special properties. Exponents of power law degree distribution of these two networks are between 1.0 and 2. 0, different from most scale-free networks which have exponents near 3.0. Coefficients of degree correlation are lower than 0, similar to biological networks. The BA (Barabasi-Albert) model and other similar models cannot explain their dynamics. Relations between clustering coefficient and node degree obey scaling law, which suggests that there exist self-similar hierarchical structures in networks. The results suggest that structures of semantic networks are influenced by the ways we learn semantic knowledge such as aggregation and metaphor.展开更多
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructe...The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.展开更多
In this paper we, firstly, classify the complex networks in which the nodes are of the lifetime distribution. Secondly, in order to study complex networks in terms of queuing system and homogeneous Markov chain, we es...In this paper we, firstly, classify the complex networks in which the nodes are of the lifetime distribution. Secondly, in order to study complex networks in terms of queuing system and homogeneous Markov chain, we establish the relation between the complex networks and queuing system, providing a new way of studying complex networks. Thirdly, we prove that there exist stationary degree distributions of M-G-P network, and obtain the analytic expression of the distribution by means of Markov chain theory. We also obtain the average path length and clustering coefficient of the network. The results show that M-G-P network is not only scale-free but also of a small-world feature in proper conditions.展开更多
In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the...In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.展开更多
In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under...In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.展开更多
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol...A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.展开更多
Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the se...Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.展开更多
This paper investigates the dynamic evolution with limited learning information on a small-world network.In the system, the information among the interaction players is not very lucid, and the players are not allowed ...This paper investigates the dynamic evolution with limited learning information on a small-world network.In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspectthe profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one andcompare its payoff to copy its strategy.It is assumed that the information acquainted by the player declines in theform of the exponential with the geographical distance between the players, and a parameter V is introduced to denotethe inspect-ability about the players.It is found that under the hospitable conditions, cooperation increases with therandomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal atthe moderate rewiring probability and is chaos with the connectivity for the snowdrift game.For the two games, theacuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageousto cooperation and cooperation increases with the randomness under the hostile condition.展开更多
The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical s...The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.展开更多
Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest p...Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.展开更多
Adaptive synchronization in NW small-world dynamical networks was studied. Firstly, an adaptive synchronization method is presented and explained. Then, it is applied to two different classes of dynamical networks, on...Adaptive synchronization in NW small-world dynamical networks was studied. Firstly, an adaptive synchronization method is presented and explained. Then, it is applied to two different classes of dynamical networks, one is a class-B network, small-world connected R6 ssler oscillators, the other is a class-A network, small-world connected Chua's circuits. The simulation verifies the validity of the presented method. It also shows that the adaptive synchronization method is robust to the variations of the node systems parameters. So the presented method can be used in networks whose node systems have unknown or time-varying parameters.展开更多
We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an...We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatico-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.展开更多
Small worm effects in the harmonious unifying hybrid preferential model (HUHPM) networks are studied both numerically and analytically. The idea and method of the HUHPM is applied to three typical examples of unweig...Small worm effects in the harmonious unifying hybrid preferential model (HUHPM) networks are studied both numerically and analytically. The idea and method of the HUHPM is applied to three typical examples of unweighted BA model, weighted BBV model, and the TDE rnodel, so-called HUHPM-BA, HUHPM-BBV and HUHPM- TDE networks. Comparing the HUHPM with current typical models above, it is found that the HUHPM networks has the smallest average path length and the biggest average clustering coefficient. The results demonstrate that the HUHPM is more suitable not only for the un-iveighted models but also for the weighted models.展开更多
Since the spreading of harmful rumors can deeply endanger a society, it is valuable to investigate strategies that can efficiently prevent hazardous rumor propagation. To conduct this investigation, the authors modify...Since the spreading of harmful rumors can deeply endanger a society, it is valuable to investigate strategies that can efficiently prevent hazardous rumor propagation. To conduct this investigation, the authors modify the SIR model to describe rumor propagation on networks, and apply two major immunization strategies, namely, the random immunization and the targeted immunization to the rumor model on a small-world network. The authors find that when the average degree of the network is small, both two strategies are effective and when the average degree is large, neither strategy is efficient in preventing rumor propagation. In the latter case, the authors propose a new strategy by decreasing the credibility of the rumor and applying either the random or the targeted immunization at the same time. Numerical simulations indicate that this strategy is effective in preventing rumor spreading on the small-world network with large average degree.展开更多
基金The National Natural Science Foundation of China(No.60275016).
文摘Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is found that they are both complex networks with features of small-world and scale-free, but with special properties. Exponents of power law degree distribution of these two networks are between 1.0 and 2. 0, different from most scale-free networks which have exponents near 3.0. Coefficients of degree correlation are lower than 0, similar to biological networks. The BA (Barabasi-Albert) model and other similar models cannot explain their dynamics. Relations between clustering coefficient and node degree obey scaling law, which suggests that there exist self-similar hierarchical structures in networks. The results suggest that structures of semantic networks are influenced by the ways we learn semantic knowledge such as aggregation and metaphor.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005
文摘The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.
基金Project supported by the Shanghai Leading Academic Discipline Project, China (Grant No T0502) and by the Shanghai Municipal Education Commission Natural Science Foundation, China (Grant No 05EZ35).
文摘In this paper we, firstly, classify the complex networks in which the nodes are of the lifetime distribution. Secondly, in order to study complex networks in terms of queuing system and homogeneous Markov chain, we establish the relation between the complex networks and queuing system, providing a new way of studying complex networks. Thirdly, we prove that there exist stationary degree distributions of M-G-P network, and obtain the analytic expression of the distribution by means of Markov chain theory. We also obtain the average path length and clustering coefficient of the network. The results show that M-G-P network is not only scale-free but also of a small-world feature in proper conditions.
基金The project supported by National Natural Science Foundation of China under Grant No.10675060
文摘In this paper, we investigate the effect due to the change of topology structure of network on the nonlinear dynamical behavior, by virtue of the OFC neuron evolution model with attack and repair strategy based on the small world. In particular, roles of various parameters relating to the dynamical behavior are carefully studied and analyzed. In addition, the avalanche and EEC-like wave activities with attack and repair strategy are also explored in detail in this work.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70571017 and 10547004 and the Key Projects of National Natural Science Foundation of China under Grant No. 70431002
文摘In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.
基金Projects(51105157, 50875101) supported by the National Natural Science Foundation of ChinaProject(2009AA043301) supported by the National High Technology Research and Development Program of China
文摘A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.
基金National Natural Science Foundation of China under Grant No.10675060
文摘Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.
基金Supported by Natural Science Foundation of China under Grant No.10974146
文摘This paper investigates the dynamic evolution with limited learning information on a small-world network.In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspectthe profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one andcompare its payoff to copy its strategy.It is assumed that the information acquainted by the player declines in theform of the exponential with the geographical distance between the players, and a parameter V is introduced to denotethe inspect-ability about the players.It is found that under the hospitable conditions, cooperation increases with therandomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal atthe moderate rewiring probability and is chaos with the connectivity for the snowdrift game.For the two games, theacuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageousto cooperation and cooperation increases with the randomness under the hostile condition.
基金Supported by the Natural Nature Foundation of China under Grant Nos.10747005,10972179the Nature Foundation of Lanzhou University of Technology under Grant No.Q200706
文摘The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.
基金The project supported by National Natural Science Foundation of China under Grant No. 10675060
文摘Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.
基金The National Natural Science Foundation of China(No.70571017)
文摘Adaptive synchronization in NW small-world dynamical networks was studied. Firstly, an adaptive synchronization method is presented and explained. Then, it is applied to two different classes of dynamical networks, one is a class-B network, small-world connected R6 ssler oscillators, the other is a class-A network, small-world connected Chua's circuits. The simulation verifies the validity of the presented method. It also shows that the adaptive synchronization method is robust to the variations of the node systems parameters. So the presented method can be used in networks whose node systems have unknown or time-varying parameters.
基金Supported by National Natural Science Foundation of China under Grand No.10575055Sponsored by K.C.Wong Magna Fund in Ningbo University
文摘We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatico-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70431002 and 70371068
文摘Small worm effects in the harmonious unifying hybrid preferential model (HUHPM) networks are studied both numerically and analytically. The idea and method of the HUHPM is applied to three typical examples of unweighted BA model, weighted BBV model, and the TDE rnodel, so-called HUHPM-BA, HUHPM-BBV and HUHPM- TDE networks. Comparing the HUHPM with current typical models above, it is found that the HUHPM networks has the smallest average path length and the biggest average clustering coefficient. The results demonstrate that the HUHPM is more suitable not only for the un-iveighted models but also for the weighted models.
基金supported by the Natural Science Foundation of China under Grant No.61070069Zhejiang Provincial Natural Science Foundation of China under Grant No.Y1100290
文摘Since the spreading of harmful rumors can deeply endanger a society, it is valuable to investigate strategies that can efficiently prevent hazardous rumor propagation. To conduct this investigation, the authors modify the SIR model to describe rumor propagation on networks, and apply two major immunization strategies, namely, the random immunization and the targeted immunization to the rumor model on a small-world network. The authors find that when the average degree of the network is small, both two strategies are effective and when the average degree is large, neither strategy is efficient in preventing rumor propagation. In the latter case, the authors propose a new strategy by decreasing the credibility of the rumor and applying either the random or the targeted immunization at the same time. Numerical simulations indicate that this strategy is effective in preventing rumor spreading on the small-world network with large average degree.