For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concent...For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.展开更多
The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explain...The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explained from the ternary phase diagram calculation. The results show that the formation of the secondary phases in Mg-Zn-Y-Zr alloys firmly depends on the mole ratio of Y to Zn, and X (Mg 12 YZn)-phase, W (Mg 3 Y 2 Zn 3 )-phase and I (Mg 3 YZn 6 )-phase come out in sequence as the ratio of Y to Zn decreases. The mole ratios of Y to Zn with the corresponding phase constituent are suggested quantitatively as follows: the phase constituent is α-Mg + I when the mole ratio of Y to Zn is about 0.164; α-Mg + I +W when the mole ratio of Y to Zn is in the range of 0.164 0.33;α-Mg +W when the mole ratio of Y to Zn is about 0.33; α-Mg +W+X when the mole ratio of Y to Zn is in the range of 0.33 1.32; and α-Mg +X when the mole ratio of Y to Zn is about 1.32. The results also offer a guideline for alloy selection and alloy design in Mg-Zn-Y-Zr system.展开更多
To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results show...To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results showed that 1%of lower Li content restricted the strengthening effect of increasing Cu content,while simultaneous increase in Cu and Li contents contributed effectively to the enhancement of strength.The alloys were mainly strengthened by plenty of fine and well dispersed TI(Al2CuLi)precipitates.There were also some minor precipitates of θ'(Al2Cu) and δ'(Al3Li),which became less in number density,even disappeared during the aging process.Meanwhile,higher Li content favored the formation θ' and δ' and a small amount of S"(Al2CuMg) phases.In addition,strengthening effect and microstructure variation were analyzed through total non-solution mole fraction of Cu and Li and their mole ratio.To obtain Al-Li alloy with super-high strength,the total mole fractions of Cu and Li should be increased,and their mole ratios should also be kept at a certain high level.展开更多
Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the ...Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.展开更多
A new simple, rapid and sensitive spectrophotometric method for the determination of chlordiazepoxide is described, based on the reaction with 2,4-dinitrophenol in water medium, apparently by a charge-transfer mechani...A new simple, rapid and sensitive spectrophotometric method for the determination of chlordiazepoxide is described, based on the reaction with 2,4-dinitrophenol in water medium, apparently by a charge-transfer mechanism, to yield 1:1 complex with maximum absorption at 444 nm. Optimum experimental conditions for the determination have been studied. The linear calibration range, apparent molar absorptivity and relative standard deviation are 2.8~96.0 mgmL-1, 1.48103 and 0.32%, respectively. The method is accurate and has been successfully applied to the determination of chlordiazpoxide in tablets. The results are in good agreement with those obtained with the official method.展开更多
The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often as...The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.展开更多
The objective of the present study is to examine cardiovascular protective action of a newly developed transdermal patch by incorporating bisoprolol and isosorbide dinitrate in spontaneously hypertensive rats. As the ...The objective of the present study is to examine cardiovascular protective action of a newly developed transdermal patch by incorporating bisoprolol and isosorbide dinitrate in spontaneously hypertensive rats. As the combination therapy with these two synergistic drugs at low doses through a suitable form of administration could provide optimal therapeutic benefit, we further evaluated the effects of a 42 d period of anti-hypertensive treatment in spontaneously hypertensive rats. Rats were divided into the following five groups: control (blank patch), bisoprolol fumarate tablets (BP-FT, 20.0 mg/kg, i.g.), bisoprolol transdermal patch (BP-TP, 20.0 mg/kg), isosorbide dinitrate transdermal patch (ISDN-TP, 20.0 mg/kg), and the combination of BP and ISDN in a transdermal patch at low doses (8 and 12 mg/kg, respectively). The effects of treatment were evaluated via biochemical indicators related to cardiovascular protection, structure and function. The combination therapy had synergistic anti-hypertensive effects and significantly reduced blood pressure with the benefit of controlling blood pressure variability compared to BP-FT and BP-TP. The combined treatment also reduced heart rate as well as BP-FT and BP-TP, while ISDN-TP had no evident effects on blood pressure, heart rate, and cardiovascular protection. Combination therapy was superior to BP-TP and BP-FT at increasing blood atrial natriuretic peptide and nitric oxide, while also reducing cardiac hydroxyproline and endothelin-1 with no difference in blood endothelin-1 and cardiac malondialdehyde levels. Cardiovascular remodeling differed among the groups, with the combination therapy reducing cardiac hypertrophy and the aortic media/lumen ratio. The consequential improvements in relaxation in response to cumulative concentrations of acetylcholine may explain the associated improvement in endothelial function. Combi- nation treatment with a transdermal patch exhibited a synergistic therapeutic effect. Such favorable cardiovascular effects with nitric oxide donors and β-blockade combination through a transdermal patch may provide long-term cardiovascular protection during anti-hypertensive treatment.展开更多
The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measureme...The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude,and meanwhile,the stability of passive film can be guaranteed by the Cr/Mo molar ratio.The Mott–Schottky(M–S)curves show that the passive film is the densest when the molar ratio of Cr/Mo is between1.37and1.69.X-ray photoelectron spectroscopy(XPS)analysis was performed to clarify chemical states of elements in the passive films.The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo.The stability of passive film is determined by the synergistic action of Cr and Mo elements.The main component of the passive film is Cr3+oxide.When the potential is greater than0.5V(vs SCE),Mo6+ions play an important role in keeping the stability of the passive film.The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film.展开更多
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered...Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.展开更多
This study investigated the hydrogenation of silicon tetrachloride (SIC14) in microwave plasma. A new launcher of argon (Ar) and hydrogen (Ha) plasma was introduced to produce a non-thermodynamic equilibrium act...This study investigated the hydrogenation of silicon tetrachloride (SIC14) in microwave plasma. A new launcher of argon (Ar) and hydrogen (Ha) plasma was introduced to produce a non-thermodynamic equilibrium activation plasma. The plasma state exhibited a characteristic temperature related to the equilibrium constant, which was termed "Reactive Temperature" in this study. Thus, the hydrogenation of SIC14 in the plasma could easily be handled with high conversion ratio and very high selectivity to trichlorosilane (SiHC13). The effects of SiC14/Ar and H2/Ar ratios on the conversion were also investigated using a mathematical model developed to determine the op- timum experimental parameters. The highest hydrogenation conversion ratio was produced at a H2/SiCl4 molar ratio of 1, with mixtures of SICl4 and H2 to Ar molar ratio of 1.2 to 1.4. In this plasma, the special system pressure and incident power were required for the highest energy efficiency of hydrogenating SIC14, while the optimum system pressure varies from 26.6 to 40 kPa depending on input power, and the optimum feed gas (He and SiCI4) molar en- ergy input was about 350 kJ. mo1-1.展开更多
Simulation method is used to provide a guideline f or ultra thin body(UTB) MOSFET designs.Three important parameters of the UTB MOS FE T,i.e.the raised S/D height,Ge mole fraction of the Ge xSi 1-x gate,and the ...Simulation method is used to provide a guideline f or ultra thin body(UTB) MOSFET designs.Three important parameters of the UTB MOS FE T,i.e.the raised S/D height,Ge mole fraction of the Ge xSi 1-x gate,and the silic on body thickness,are comprehensively analyzed and optimized.The optimal region of feasible Ge mole fraction and the silicon body thickness for low operating po wer device are given.As the simulation results show that through changing Ge mole fraction coupl ed with the silicon body thickness tuning,UTB device with good performance can b e obtained.展开更多
In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, whi...In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.展开更多
The adsorption capability of D318 resin for Cr(Ⅵ) was investigated by chemistry analysis. Experimental results show that D318 resin has the best adsorption ability for Cr(Ⅵ) at pH=3.16 in HAc-NaAc medium. The st...The adsorption capability of D318 resin for Cr(Ⅵ) was investigated by chemistry analysis. Experimental results show that D318 resin has the best adsorption ability for Cr(Ⅵ) at pH=3.16 in HAc-NaAc medium. The statically saturated adsorption capacity of the resin is 265.4 mg/g. The thermodynamic adsorption parameters, enthalpy change AH and free energy change AG298 of the adsorption reaction are 4.81 and -5.16 kJ/mol, respectively. The apparent activation energy Ea is 22.4 kJ/mol. The adsorption behavior obeys the Freundlich isotherm. The molar coordination ratio of the functional group of resin to Cr(Ⅵ) is 3:2. Cr(Ⅵ) adsorbed on D318 resin can be eluted by 5%NaOH-5%NaCl quantitatively.展开更多
Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from...Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .展开更多
基金financial supports from the National Key Research and Development Program of China(No.2022YFB3504501)the National Natural Science Foundation of China(Nos.52274355,91962211)the Gansu Province Science and Technology Major Special Project,China(No.22ZD6GD061)。
文摘For a highly efficient recycling of a wastewater containing a high concentration of MgCl_2,Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_x(OH)_y~(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_2(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.
基金Project(50725413)supported by the National Natural Science Foundation of China
文摘The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explained from the ternary phase diagram calculation. The results show that the formation of the secondary phases in Mg-Zn-Y-Zr alloys firmly depends on the mole ratio of Y to Zn, and X (Mg 12 YZn)-phase, W (Mg 3 Y 2 Zn 3 )-phase and I (Mg 3 YZn 6 )-phase come out in sequence as the ratio of Y to Zn decreases. The mole ratios of Y to Zn with the corresponding phase constituent are suggested quantitatively as follows: the phase constituent is α-Mg + I when the mole ratio of Y to Zn is about 0.164; α-Mg + I +W when the mole ratio of Y to Zn is in the range of 0.164 0.33;α-Mg +W when the mole ratio of Y to Zn is about 0.33; α-Mg +W+X when the mole ratio of Y to Zn is in the range of 0.33 1.32; and α-Mg +X when the mole ratio of Y to Zn is about 1.32. The results also offer a guideline for alloy selection and alloy design in Mg-Zn-Y-Zr system.
基金Project(2013AA032401)supported by the National High-tech Research and Development Program of ChinaProject(2013JSJJ 001)supported by Teacher's Research Foundation of Central South University,China
文摘To develop super-high strength Al-Li alloy,the microstructures and mechanical properties of Mg,Ag and Zn microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys(mass fraction) with T8 temper were studied.The results showed that 1%of lower Li content restricted the strengthening effect of increasing Cu content,while simultaneous increase in Cu and Li contents contributed effectively to the enhancement of strength.The alloys were mainly strengthened by plenty of fine and well dispersed TI(Al2CuLi)precipitates.There were also some minor precipitates of θ'(Al2Cu) and δ'(Al3Li),which became less in number density,even disappeared during the aging process.Meanwhile,higher Li content favored the formation θ' and δ' and a small amount of S"(Al2CuMg) phases.In addition,strengthening effect and microstructure variation were analyzed through total non-solution mole fraction of Cu and Li and their mole ratio.To obtain Al-Li alloy with super-high strength,the total mole fractions of Cu and Li should be increased,and their mole ratios should also be kept at a certain high level.
基金Project (2010JQ6008) supported by the Natural Science Foundation of Shaanxi Province,China
文摘Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.
文摘A new simple, rapid and sensitive spectrophotometric method for the determination of chlordiazepoxide is described, based on the reaction with 2,4-dinitrophenol in water medium, apparently by a charge-transfer mechanism, to yield 1:1 complex with maximum absorption at 444 nm. Optimum experimental conditions for the determination have been studied. The linear calibration range, apparent molar absorptivity and relative standard deviation are 2.8~96.0 mgmL-1, 1.48103 and 0.32%, respectively. The method is accurate and has been successfully applied to the determination of chlordiazpoxide in tablets. The results are in good agreement with those obtained with the official method.
基金Research Funds from North University of China(No.130087)
文摘The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.
基金‘863'High Technology R&D Project of Ministry of Science and Technology of China(Grant No.2004AA2Z3073).
文摘The objective of the present study is to examine cardiovascular protective action of a newly developed transdermal patch by incorporating bisoprolol and isosorbide dinitrate in spontaneously hypertensive rats. As the combination therapy with these two synergistic drugs at low doses through a suitable form of administration could provide optimal therapeutic benefit, we further evaluated the effects of a 42 d period of anti-hypertensive treatment in spontaneously hypertensive rats. Rats were divided into the following five groups: control (blank patch), bisoprolol fumarate tablets (BP-FT, 20.0 mg/kg, i.g.), bisoprolol transdermal patch (BP-TP, 20.0 mg/kg), isosorbide dinitrate transdermal patch (ISDN-TP, 20.0 mg/kg), and the combination of BP and ISDN in a transdermal patch at low doses (8 and 12 mg/kg, respectively). The effects of treatment were evaluated via biochemical indicators related to cardiovascular protection, structure and function. The combination therapy had synergistic anti-hypertensive effects and significantly reduced blood pressure with the benefit of controlling blood pressure variability compared to BP-FT and BP-TP. The combined treatment also reduced heart rate as well as BP-FT and BP-TP, while ISDN-TP had no evident effects on blood pressure, heart rate, and cardiovascular protection. Combination therapy was superior to BP-TP and BP-FT at increasing blood atrial natriuretic peptide and nitric oxide, while also reducing cardiac hydroxyproline and endothelin-1 with no difference in blood endothelin-1 and cardiac malondialdehyde levels. Cardiovascular remodeling differed among the groups, with the combination therapy reducing cardiac hypertrophy and the aortic media/lumen ratio. The consequential improvements in relaxation in response to cumulative concentrations of acetylcholine may explain the associated improvement in endothelial function. Combi- nation treatment with a transdermal patch exhibited a synergistic therapeutic effect. Such favorable cardiovascular effects with nitric oxide donors and β-blockade combination through a transdermal patch may provide long-term cardiovascular protection during anti-hypertensive treatment.
基金Project(51261021)supported by the National Natural Science Foundation of ChinaProject(KJLD13056)supported by the Science and Technology Landing Plan of Jiangxi Province,China
文摘The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude,and meanwhile,the stability of passive film can be guaranteed by the Cr/Mo molar ratio.The Mott–Schottky(M–S)curves show that the passive film is the densest when the molar ratio of Cr/Mo is between1.37and1.69.X-ray photoelectron spectroscopy(XPS)analysis was performed to clarify chemical states of elements in the passive films.The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo.The stability of passive film is determined by the synergistic action of Cr and Mo elements.The main component of the passive film is Cr3+oxide.When the potential is greater than0.5V(vs SCE),Mo6+ions play an important role in keeping the stability of the passive film.The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film.
文摘Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.
文摘This study investigated the hydrogenation of silicon tetrachloride (SIC14) in microwave plasma. A new launcher of argon (Ar) and hydrogen (Ha) plasma was introduced to produce a non-thermodynamic equilibrium activation plasma. The plasma state exhibited a characteristic temperature related to the equilibrium constant, which was termed "Reactive Temperature" in this study. Thus, the hydrogenation of SIC14 in the plasma could easily be handled with high conversion ratio and very high selectivity to trichlorosilane (SiHC13). The effects of SiC14/Ar and H2/Ar ratios on the conversion were also investigated using a mathematical model developed to determine the op- timum experimental parameters. The highest hydrogenation conversion ratio was produced at a H2/SiCl4 molar ratio of 1, with mixtures of SICl4 and H2 to Ar molar ratio of 1.2 to 1.4. In this plasma, the special system pressure and incident power were required for the highest energy efficiency of hydrogenating SIC14, while the optimum system pressure varies from 26.6 to 40 kPa depending on input power, and the optimum feed gas (He and SiCI4) molar en- ergy input was about 350 kJ. mo1-1.
文摘Simulation method is used to provide a guideline f or ultra thin body(UTB) MOSFET designs.Three important parameters of the UTB MOS FE T,i.e.the raised S/D height,Ge mole fraction of the Ge xSi 1-x gate,and the silic on body thickness,are comprehensively analyzed and optimized.The optimal region of feasible Ge mole fraction and the silicon body thickness for low operating po wer device are given.As the simulation results show that through changing Ge mole fraction coupl ed with the silicon body thickness tuning,UTB device with good performance can b e obtained.
基金Supported by the Henan Outstanding Youth Science Fund (0612002400)
文摘In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.
基金Project (Y304121) supported by the Natural Science Foundation of Zhejiang Province,China
文摘The adsorption capability of D318 resin for Cr(Ⅵ) was investigated by chemistry analysis. Experimental results show that D318 resin has the best adsorption ability for Cr(Ⅵ) at pH=3.16 in HAc-NaAc medium. The statically saturated adsorption capacity of the resin is 265.4 mg/g. The thermodynamic adsorption parameters, enthalpy change AH and free energy change AG298 of the adsorption reaction are 4.81 and -5.16 kJ/mol, respectively. The apparent activation energy Ea is 22.4 kJ/mol. The adsorption behavior obeys the Freundlich isotherm. The molar coordination ratio of the functional group of resin to Cr(Ⅵ) is 3:2. Cr(Ⅵ) adsorbed on D318 resin can be eluted by 5%NaOH-5%NaCl quantitatively.
基金Project supported by the One Hundred Talents Program of Chinese Academy of Sciences
文摘Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .