We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea(NSCS) with a one-way nesting technology for downscaling.The temperature and ...We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea(NSCS) with a one-way nesting technology for downscaling.The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf.The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface.At this point,the mixed layer depth also was deepened along the front,and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity.Thus,submesoscale stirring/mixing is important for tracers,such as temperature,salinity,nutrients,dissolved organic,and inorganic carbon.This result may have implication for climate and biogeochemical investigations.展开更多
We show that the quantum-mechanical fundamental representations, say, the coordinate representation, the coherent state representation, the Fan-Klauder entangled state representation can be recast into s-ordering oper...We show that the quantum-mechanical fundamental representations, say, the coordinate representation, the coherent state representation, the Fan-Klauder entangled state representation can be recast into s-ordering operator expansion, which is elegant in form and has many applications in deriving new operator identities. This demonstrates that Dirac's symbolic method can be merged into Newton-Leibniz integration theory in a broad way.展开更多
We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the infla...We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the inflaton field equation[J.High Energy Phys.09(2014) 020].We build excited coherent states over the non-de Sitter modes and despite the Jack of interactions in the Lagrangian,we find a non-zero one-point function.It is shown that the primordial non-Gaussianity resulting from excited-de Sitter modes depend both of time and background space-time.It is very tiny of order(≤10^-24),at the Planck initial fixed time that confirmed by resent observations for single field inflation but it grows in the present epoch.Moreover,our results at the leading order are similar to what obtained with general initial states and in the dS limit leads to standard results[J.Cosmol.Astropart.Phys.1202(2012) 005].We will show that the non-dS modes and its resulting spectrum are more usable for far past time limit.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)
文摘We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea(NSCS) with a one-way nesting technology for downscaling.The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf.The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface.At this point,the mixed layer depth also was deepened along the front,and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity.Thus,submesoscale stirring/mixing is important for tracers,such as temperature,salinity,nutrients,dissolved organic,and inorganic carbon.This result may have implication for climate and biogeochemical investigations.
基金supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the Special Funds of the National Natural Science Foundation of China (Grant No.10947017/A05)+1 种基金the Higher School Fund of Outstanding Young Talent (Grant No.2010SQRL132)the Scientific Research Starting Foundation of Chizhou University (Grant No.2010RC036)
文摘We show that the quantum-mechanical fundamental representations, say, the coordinate representation, the coherent state representation, the Fan-Klauder entangled state representation can be recast into s-ordering operator expansion, which is elegant in form and has many applications in deriving new operator identities. This demonstrates that Dirac's symbolic method can be merged into Newton-Leibniz integration theory in a broad way.
基金supported by the Islamic Azad University,Ayatollah Amoli Branch, Amol,Mazandaran,Iran
文摘We use the excited coherent states built over the initial non-de Sitter modes,to study the modification of spectra of primordial scalar fluctuation.Non-de Sitter modes are actually the asymptotic solution of the inflaton field equation[J.High Energy Phys.09(2014) 020].We build excited coherent states over the non-de Sitter modes and despite the Jack of interactions in the Lagrangian,we find a non-zero one-point function.It is shown that the primordial non-Gaussianity resulting from excited-de Sitter modes depend both of time and background space-time.It is very tiny of order(≤10^-24),at the Planck initial fixed time that confirmed by resent observations for single field inflation but it grows in the present epoch.Moreover,our results at the leading order are similar to what obtained with general initial states and in the dS limit leads to standard results[J.Cosmol.Astropart.Phys.1202(2012) 005].We will show that the non-dS modes and its resulting spectrum are more usable for far past time limit.