This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p...This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained opti...This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.展开更多
文摘This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
基金This research is partly supported by the National Natural Science Foundation of China under Grant Nos. 71171027 and 11071028, the Fundamental Research Funds for the Central Universities under Grant No. DUT11SX11, and the Key Project of the National Natural Science Foundation of China under Grant No. 71031002.
文摘This paper considers a class of stochastic variational inequality problems. As proposed by Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems as constrained optimization problems and then propose a sample average approximation method for solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of the optimal values and the optimal solutions of the approximation problems. Finally, some numerical results are reported to show efficiency of the proposed method.