The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
Various extensional structures,e.g.,half grabens,detachment faults,and metamorphic core complexes,were formed in the Liaodong Peninsula.There are two metamorphic core complexes (mcc's) in the western part of the P...Various extensional structures,e.g.,half grabens,detachment faults,and metamorphic core complexes,were formed in the Liaodong Peninsula.There are two metamorphic core complexes (mcc's) in the western part of the Peninsula,i.e.the Liaonan mcc and the Wanfu mcc.They share the same lower plate and constitute a conjugate mcc pair.The Dayingzi detachment fault system and the three half grabens are exposed in the central and eastern parts,respectively.U-Pb dating of zircons from syntectonic plutons in the lower plates of the detachment faults and volcanic rocks from half graben basins indicates that their formation spans from 135 to 106 Ma,although the individual structure may be formed at a particular stage.Despite the differences in age of formation,in the regional attitudes,and in rooting depths,the extensional structures have great similarities in their kinematics,geometrical asymmetry,and coeval tectono-magmatic activities etc.Macroscopically,the extensional structures constitute conjugate associations,but a particular one generally has asymmetric patterns.Early Cretaceous extensional structures extend from the Liaodong Peninsula to North China,Northeast China,South China,and eastern Mongolia and Transbaikal area in Russia.The extensional structures from different areas share many common features.The Liaodong Peninsula is the miniature of the East Asia with respect to the formation of extensional structures in Early Cretaceous.It is suggested that the interaction of the Izanagi Plate with Eurasia Plate is responsible for the extension of crust.The structural mobility of the lithosphere,partly attributed to the fluid flow at the depth,and detachment faulting in both the crustal and mantle lithosphere provide important constraints on the development of Early Cretaceous extensional structures in the East Asia.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
基金supported by the National Natural Science Foundation of China (Grant No. 90814006)111 Project (Grant No. B07011)
文摘Various extensional structures,e.g.,half grabens,detachment faults,and metamorphic core complexes,were formed in the Liaodong Peninsula.There are two metamorphic core complexes (mcc's) in the western part of the Peninsula,i.e.the Liaonan mcc and the Wanfu mcc.They share the same lower plate and constitute a conjugate mcc pair.The Dayingzi detachment fault system and the three half grabens are exposed in the central and eastern parts,respectively.U-Pb dating of zircons from syntectonic plutons in the lower plates of the detachment faults and volcanic rocks from half graben basins indicates that their formation spans from 135 to 106 Ma,although the individual structure may be formed at a particular stage.Despite the differences in age of formation,in the regional attitudes,and in rooting depths,the extensional structures have great similarities in their kinematics,geometrical asymmetry,and coeval tectono-magmatic activities etc.Macroscopically,the extensional structures constitute conjugate associations,but a particular one generally has asymmetric patterns.Early Cretaceous extensional structures extend from the Liaodong Peninsula to North China,Northeast China,South China,and eastern Mongolia and Transbaikal area in Russia.The extensional structures from different areas share many common features.The Liaodong Peninsula is the miniature of the East Asia with respect to the formation of extensional structures in Early Cretaceous.It is suggested that the interaction of the Izanagi Plate with Eurasia Plate is responsible for the extension of crust.The structural mobility of the lithosphere,partly attributed to the fluid flow at the depth,and detachment faulting in both the crustal and mantle lithosphere provide important constraints on the development of Early Cretaceous extensional structures in the East Asia.