To develop modal macro-strain ( MMS ) identification techniques and improve their applicability in a continuous health monitoring system for civil infrastructures, the concept of operational macro-strain shape (OMS...To develop modal macro-strain ( MMS ) identification techniques and improve their applicability in a continuous health monitoring system for civil infrastructures, the concept of operational macro-strain shape (OMSS) and the corresponding identification method are proposed under unknown ever-changing loading conditions, and the MMS is then obtained. The core of the proposed technique is mainly based on the specific property that the macro-strain transmissibility tends to be independent of external excitations at the poles of the system and converges to a unique value. The proposed method is verified using the experimental data from a three-span continuous beam excited by an impact hammer at different locations. The identified results are also compared with the commonly used methods, such as the peak- picking (PP) method, the stochastic subspace identification (SSI) method, and numerical results, in the case of unknown input forces. Results show that the proposed technique has unique merits in accuracy and robustness due to its combining multiple tests under changing loading conditions, which also reveal the promising application of the distributed strain sensing system in identifying MMS of operational structures, as well as in the structural health monitoring (SHM) field.展开更多
Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from ...Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture.展开更多
The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is...The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is interface state generation for pMOSFETs with different channel width.The cause of the width-enhanced device degradation is attributed to the combination of width-enhanced threshold voltage and series resistance.展开更多
In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the...In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the disturbance and stability problem of EFPI, which simplifies the sensing system, improves the sensor performance and reduces the cost. In this paper, the relations between the output interferential light intensity and the F P cavity length are calculated based on the theory of mode field coupling. The EFPI fiber optic sensor is adhered to a distributed smart laminate beam to detect vibration frequency and axial strain value, the results coincident with the results tested by PZT.展开更多
The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the und...The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the underlying mechanics of the specimen deformation from a microscale perspective.Deformations of specimens with different initial void ratios at different confining stresses under different loading conditions are studied.Results show that the discrete element models successfully capture the specimen deformation and the strain localization.Particle behaviors including particle rotation and displacement and the mesoscale void ratio distributions are used to explain the strain localization and specimen deformation.It is found that the loading condition is one of the most important factors controlling the specimen deformation mode.Microscale behavior of the granular soil is the driving mechanics of the macroscale deformation of the granular assembly.展开更多
The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging fr...The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite eleme...An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,ca...A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.展开更多
The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In ...The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.展开更多
Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditiona...Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.展开更多
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temp...The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to w...Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.展开更多
Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based ...Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents.The method builds on existing selective protection methods.Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension.The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix.The method of calculation is illustrated.The results show that the method involves simple calculations, is easy to do and is highly accurate.It is, therefore, suitable for distribution networks having different neutral grounding modes.展开更多
The aim of this study is to investigate the dynamic stress-strain relation for the hybrid composite (nylon +carbon). Three groups of specimens are used with different number of carbon layers. The specimens were sub...The aim of this study is to investigate the dynamic stress-strain relation for the hybrid composite (nylon +carbon). Three groups of specimens are used with different number of carbon layers. The specimens were subjected to high velocity impact with different strain rates. SHPB (split Hopkinson pressure bar) is used in this investigation. The results show that, the stress-strain relation various with the strain rate. The maximum stress and strain are proportion directly with the strain rate. Also, the results revealed that, as the number of carbon layer increased, the maximum strain decreased.展开更多
基金The National Natural Science Foudation of China(No.51578140)the Natural Science Foundation of Jiangsu Province(No.BK20151092)Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0108)
文摘To develop modal macro-strain ( MMS ) identification techniques and improve their applicability in a continuous health monitoring system for civil infrastructures, the concept of operational macro-strain shape (OMSS) and the corresponding identification method are proposed under unknown ever-changing loading conditions, and the MMS is then obtained. The core of the proposed technique is mainly based on the specific property that the macro-strain transmissibility tends to be independent of external excitations at the poles of the system and converges to a unique value. The proposed method is verified using the experimental data from a three-span continuous beam excited by an impact hammer at different locations. The identified results are also compared with the commonly used methods, such as the peak- picking (PP) method, the stochastic subspace identification (SSI) method, and numerical results, in the case of unknown input forces. Results show that the proposed technique has unique merits in accuracy and robustness due to its combining multiple tests under changing loading conditions, which also reveal the promising application of the distributed strain sensing system in identifying MMS of operational structures, as well as in the structural health monitoring (SHM) field.
基金Projects(10902106,90505002)supported by the National Natural Science Foundation of China
文摘Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture.
文摘The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is interface state generation for pMOSFETs with different channel width.The cause of the width-enhanced device degradation is attributed to the combination of width-enhanced threshold voltage and series resistance.
文摘In the work of developing extrinsic fabry perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the disturbance and stability problem of EFPI, which simplifies the sensing system, improves the sensor performance and reduces the cost. In this paper, the relations between the output interferential light intensity and the F P cavity length are calculated based on the theory of mode field coupling. The EFPI fiber optic sensor is adhered to a distributed smart laminate beam to detect vibration frequency and axial strain value, the results coincident with the results tested by PZT.
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
基金The National Natural Science Foundation of China(No.51079030)
文摘The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression,plane strain,and direct shear)with different initial conditions to explore the underlying mechanics of the specimen deformation from a microscale perspective.Deformations of specimens with different initial void ratios at different confining stresses under different loading conditions are studied.Results show that the discrete element models successfully capture the specimen deformation and the strain localization.Particle behaviors including particle rotation and displacement and the mesoscale void ratio distributions are used to explain the strain localization and specimen deformation.It is found that the loading condition is one of the most important factors controlling the specimen deformation mode.Microscale behavior of the granular soil is the driving mechanics of the macroscale deformation of the granular assembly.
基金Projects 50490273 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China+1 种基金08KJD130003 by the Basic Research Program of University in Jiangsu ProvinceXKY2007219 by Xuzhou Institute of Technology
文摘The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
基金Universiti Kebangsaan Malaysia grant UKM-KK-03-FRGS 0118-2010Universiti Teknikal Malaysia Melaka for supporting these research activities
文摘An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036)
文摘A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.
文摘The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.
文摘Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.
基金Supported by the National High Technology Research and Development of China(2012AA053101,2011AA050106)the National Key State Basic Research Development Program of China(2010CB227004)the National Natural Science Foundation of China(21376081)
文摘The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
文摘Limited resources are available on the application of wind generation systems interconnected to weak powemetworks. With the need to further interface DG (distributed generation) including WG (wind generation) to weak networks, it is necessary to establish a means of determining what is the most efficient quantity of WG that can be applied in order to maintain stability in the network. This paper establishes a concept that can be applied to weak networks. The aim is to estimate how much WG can be installed on weak networks as well as establishing characteristic responses to generation loss without and with faulted conditions. The main contribution is a thorough understanding of weak network limitation proved to be the most critical parameter in these calculations.
基金Project 50504015 supported by the National Natural Science Foundation of Chinathe Youth Science and Technology Research Program of China University of Mining and Technology (0C060996)
文摘Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents.The method builds on existing selective protection methods.Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension.The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix.The method of calculation is illustrated.The results show that the method involves simple calculations, is easy to do and is highly accurate.It is, therefore, suitable for distribution networks having different neutral grounding modes.
文摘The aim of this study is to investigate the dynamic stress-strain relation for the hybrid composite (nylon +carbon). Three groups of specimens are used with different number of carbon layers. The specimens were subjected to high velocity impact with different strain rates. SHPB (split Hopkinson pressure bar) is used in this investigation. The results show that, the stress-strain relation various with the strain rate. The maximum stress and strain are proportion directly with the strain rate. Also, the results revealed that, as the number of carbon layer increased, the maximum strain decreased.