In the present study, the zinc oxide nanoparticles(ZnO NPs) were prepared by using a sol-gel method. The characterization of ZnO NPs, such as particle size, morphology, crystal form, optical properties and p H-respons...In the present study, the zinc oxide nanoparticles(ZnO NPs) were prepared by using a sol-gel method. The characterization of ZnO NPs, such as particle size, morphology, crystal form, optical properties and p H-responsive behavior, was carried out. The in vitro anti-tumor activity of ZnO NPs was evaluated on PC-3M and 4T1 cell lines. The results indicated that ZnO NPs were spherical NPs with uniform particle size, excellent fluorescence properties, and p H-responsive behavior. The in vitro anti-tumor activity of ZnO NPs was observed on PC-3M and 4T1 cell lines. Considering to above characteristics, Zn O NPs could be used as drug delivery carries for loading active compound performing therapeutic and diagnostic effect.展开更多
Flexible and wearable sensors have drawn ex-tensive concern due to their wide potential applications inwearable electronics and intelligent robots. Flexible sensorswith high sensRivity, good flexibility, and excellent...Flexible and wearable sensors have drawn ex-tensive concern due to their wide potential applications inwearable electronics and intelligent robots. Flexible sensorswith high sensRivity, good flexibility, and excellent stabilityare highly desirable for monitoring human biomedical signals,movements and the environment. The active materials and thedevice structures are the keys to achieve high performance.Carbon nanomaterials, including carbon nanotubes (CNTs),graphene, carbon black and carbon nanofibers, are one of themost commonly used active materials for the fabrication ofhigh-performance flexible sensors due to their superiorproperties. Especially, CNTs and graphene can be assembledinto various multi-scaled macroscopic structures, includingone dimensional fibers, two dimensional films and three di-mensional architectures, endowing the facile design of flexiblesensors for wide practical applications. In addition, the hybridstructured carbon materials derived from natural bio-mate-rials also showed a bright prospect for applications in flexiblesensors. This review provides a comprehensive presentation offlexible and wearable sensors based on the above variouscarbon materials. Following a brief introduction of flexiblesensors and carbon materials, the fundamentals of typicalflexible sensors, such as strain sensors, pressure sensors,temperature sensors and humidity sensors, are presented.Then, the latest progress of flexible sensors based on carbonmaterials, including the fabrication processes, performanceand applications, are summarized. Finally, the remainingmajor challenges of carbon-based flexible electronics are dis-cussed and the future research directions are proposed.展开更多
基金National Natural Science Foundation of China(Grant No.81773646)the National Key Research and Development Program of China(Grant No.2017YFA0205600)the Innovation Team of the Ministry of Education(Grant No.BMU2017TD003)。
文摘In the present study, the zinc oxide nanoparticles(ZnO NPs) were prepared by using a sol-gel method. The characterization of ZnO NPs, such as particle size, morphology, crystal form, optical properties and p H-responsive behavior, was carried out. The in vitro anti-tumor activity of ZnO NPs was evaluated on PC-3M and 4T1 cell lines. The results indicated that ZnO NPs were spherical NPs with uniform particle size, excellent fluorescence properties, and p H-responsive behavior. The in vitro anti-tumor activity of ZnO NPs was observed on PC-3M and 4T1 cell lines. Considering to above characteristics, Zn O NPs could be used as drug delivery carries for loading active compound performing therapeutic and diagnostic effect.
基金supported by the National Natural Science Foundation of China(51672153,51422204 and 51372132)National Key Basic Research and Development Program(2016YFA0200103 and 2013CB228506)
文摘Flexible and wearable sensors have drawn ex-tensive concern due to their wide potential applications inwearable electronics and intelligent robots. Flexible sensorswith high sensRivity, good flexibility, and excellent stabilityare highly desirable for monitoring human biomedical signals,movements and the environment. The active materials and thedevice structures are the keys to achieve high performance.Carbon nanomaterials, including carbon nanotubes (CNTs),graphene, carbon black and carbon nanofibers, are one of themost commonly used active materials for the fabrication ofhigh-performance flexible sensors due to their superiorproperties. Especially, CNTs and graphene can be assembledinto various multi-scaled macroscopic structures, includingone dimensional fibers, two dimensional films and three di-mensional architectures, endowing the facile design of flexiblesensors for wide practical applications. In addition, the hybridstructured carbon materials derived from natural bio-mate-rials also showed a bright prospect for applications in flexiblesensors. This review provides a comprehensive presentation offlexible and wearable sensors based on the above variouscarbon materials. Following a brief introduction of flexiblesensors and carbon materials, the fundamentals of typicalflexible sensors, such as strain sensors, pressure sensors,temperature sensors and humidity sensors, are presented.Then, the latest progress of flexible sensors based on carbonmaterials, including the fabrication processes, performanceand applications, are summarized. Finally, the remainingmajor challenges of carbon-based flexible electronics are dis-cussed and the future research directions are proposed.