Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for f...Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size, crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functionsiRosenbrock function and Griewank functionito validate the approach.展开更多
Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environment...Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them 〉6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidiosehyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oeeanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseu- donana. This understanding will facilitate the breeding trials of some economic microalgae (e.g., N. gaditana, N. oceanica, C. vari- ablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.展开更多
The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains ...The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.展开更多
The aim of the present study was to implant an efficient strategy for controlling the level of the effluent-oily foam interface in a DAF (dissolved air flotation) chamber of a pilot-scale prototype. DAF has been suc...The aim of the present study was to implant an efficient strategy for controlling the level of the effluent-oily foam interface in a DAF (dissolved air flotation) chamber of a pilot-scale prototype. DAF has been successfully used in the treatment of oily water, which is one of the main environmental problems in different industrial facilities. Along with important operational parameters, such as microbubble size and flow rate, the control strategy for the automation of a DAF chamber may be an important tool for increasing efficiency. Controlling the level was the strategy chosen to enhance the separation efficiency in a pilot-scale DAF prototype, with monitoring performed using a computational program in LabVIEW (laboratory virtual instrument engineering workbench). The findings demonstrate that it is possible to maintain the level of the fluid at a reference value established by the operator using the software program through the application of classic proportional integral derivative controllers. Using this control tool, the efficiency of water-oil separation in the pilot flotation chamber prototype was increased to nearly 98%.展开更多
This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control...This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.展开更多
The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential liv...The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.展开更多
This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedb...This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedback. The method mainly includes a differentiator, proportioner and signal synthesizer. Analysis and simulation on the step characteristics of an electromagnetic actuator were discussed, and all the results show that the approach can improve the actuator's step response greatly. Finally, the control method is applied to a real gravure system which verifies the control performance.展开更多
A large class of stochastic differential games for several players is considered in this paper.The class includes Nash differential games as well as Stackelberg differential games.A mix is possible.The existence of fe...A large class of stochastic differential games for several players is considered in this paper.The class includes Nash differential games as well as Stackelberg differential games.A mix is possible.The existence of feedback strategies under general conditions is proved.The limitations concern the functionals in which the state and the controls appear separately.This is also true for the state equations.The controls appear in a quadratic form for the payoff and linearly in the state equation.The most serious restriction is the dimension of the state equation,which cannot exceed 2.The reason comes from PDE(partial differential equations) techniques used in studying the system of Bellman equations obtained by Dynamic Programming arguments.In the authors' previous work in 2002,there is not such a restriction,but there are serious restrictions on the structure of the Hamiltonians,which are violated in the applications dealt with in this article.展开更多
文摘Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size, crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functionsiRosenbrock function and Griewank functionito validate the approach.
基金financially supported by National Science and Technology Supporting Program of China (2011BAD14B01)National Natural Science Foundation of China (31270408)Key Laborotary of Marine Bioactive Substance of State Oceanic Administration of China, The First Institute of Oceanography
文摘Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them 〉6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidiosehyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oeeanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseu- donana. This understanding will facilitate the breeding trials of some economic microalgae (e.g., N. gaditana, N. oceanica, C. vari- ablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.
文摘The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.
文摘The aim of the present study was to implant an efficient strategy for controlling the level of the effluent-oily foam interface in a DAF (dissolved air flotation) chamber of a pilot-scale prototype. DAF has been successfully used in the treatment of oily water, which is one of the main environmental problems in different industrial facilities. Along with important operational parameters, such as microbubble size and flow rate, the control strategy for the automation of a DAF chamber may be an important tool for increasing efficiency. Controlling the level was the strategy chosen to enhance the separation efficiency in a pilot-scale DAF prototype, with monitoring performed using a computational program in LabVIEW (laboratory virtual instrument engineering workbench). The findings demonstrate that it is possible to maintain the level of the fluid at a reference value established by the operator using the software program through the application of classic proportional integral derivative controllers. Using this control tool, the efficiency of water-oil separation in the pilot flotation chamber prototype was increased to nearly 98%.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB219700)the National Natural Science Foundation of China (Grant No. 50837001)
文摘This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.
基金supported by National Natural Science Foundation of China (Grant No. 31290232)National High-Tech Program (Grant No. 2012AA092103-2)National Basic Research Program of China (Grant No. 2011CB808800)
文摘The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.
基金Project supported by the Science and Technology Plan of Zhejiang Province (No. 2008C11028), China
文摘This paper presents a new control strategy based on current differential feedback to accelerate the dynamic response of electromagnetic actuators, instead of traditional closed-loop control based on displacement feedback. The method mainly includes a differentiator, proportioner and signal synthesizer. Analysis and simulation on the step characteristics of an electromagnetic actuator were discussed, and all the results show that the approach can improve the actuator's step response greatly. Finally, the control method is applied to a real gravure system which verifies the control performance.
基金supported by DAAD-PPP Hong Kong/Germany (No. G. HK 036/09)
文摘A large class of stochastic differential games for several players is considered in this paper.The class includes Nash differential games as well as Stackelberg differential games.A mix is possible.The existence of feedback strategies under general conditions is proved.The limitations concern the functionals in which the state and the controls appear separately.This is also true for the state equations.The controls appear in a quadratic form for the payoff and linearly in the state equation.The most serious restriction is the dimension of the state equation,which cannot exceed 2.The reason comes from PDE(partial differential equations) techniques used in studying the system of Bellman equations obtained by Dynamic Programming arguments.In the authors' previous work in 2002,there is not such a restriction,but there are serious restrictions on the structure of the Hamiltonians,which are violated in the applications dealt with in this article.