Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan...Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.展开更多
Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the ...Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the influence of carbon content on mechanical properties was studied.The results show that the maximum value of hardness and transverse rupture strength are HRA 93.2 and 3396 MPa respectively when the carbon black content is 0.45%.The microstructure investigated by SEM show that the WC grains growth mainly occurs during the early stage of microwave sintering by the coalescence of grains.展开更多
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t...Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.展开更多
The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating....The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.展开更多
Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on...Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.展开更多
The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When t...The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.展开更多
This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bul...Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.展开更多
Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of noneq...Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.展开更多
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d...A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.展开更多
Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods p...Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods providing a considerable Zener drag influencing the softening behavior while the other gave a lower density of coarser dispersoid structure providing a much smaller drag effect. The gradual microstructural evolutions during annealing for the three variants were captured by interrupting annealing at different time. Effects of microchemistry state on recrystallization kinetics, recrystallized grain structure and texture were characterized by EBSD. It is demonstrated that the actual softening kinetics, final microstructure and texture are a result of delicate balance between processing condition and microchemistry state. Strong concurrent precipitation takes place in the case with high concentration of Mn in solid solution, which suppresses nucleation and retards recrystallization and finally leads to grain structure of coarse elongated grains dominated by a P texture component together with a ND-rotated cube component. On the contrary, when solute content of Mn is low and pre-existing dispersoids are relatively coarser, faster recrystallization kinetics is exhibited together with an equiaxed grain structure with mainly cube texture.展开更多
TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality in...TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality inspection of the joint were studied.The results show that the microstructure of the weld consists of a large number of acicularα′andβblock.The microhardness curve shows that the microhardness value in the fusion zone(FZ)of the joint is significantly higher than that in the heat affected zone(HAZ)and the base metal(BM),and the microhardness of the base metal is the lowest.The tensile strength of the joint is equivalent to that of the base metal,and the fracture morphology shows that the fracture mechanism of the joint is mixed ductile-brittle fracture mode.The weld quality is excellent through chemical inspection,penetrant inspection and X-ray inspection.展开更多
The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) charac...The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.展开更多
The effects of Zn content on strength and wear performance of Al-12Si-3 Cu alloy synthesized by gravity casting were systematically investigated.The microstructure and mechanical properties of the alloys were evaluate...The effects of Zn content on strength and wear performance of Al-12Si-3 Cu alloy synthesized by gravity casting were systematically investigated.The microstructure and mechanical properties of the alloys were evaluated using OM,XRD,SEM as well as hardness,tension,compression and Charpy impact tests.Their dry sliding wear tests were carried out with a ball-on-disk tester.Microscopic examinations revealed that the microstructure of the base alloy consisted of theα(Al)dendrites,needle-type and coarse Si particles,and CuAl2(θ)phase.The addition of Zn to this alloy resulted in the formation ofα-solid solution phase and the increase of coarse Si particles.The hardness,yield,tensile and compressive strengths,elongation to fracture and impact toughness of the Al-12Si-3 Cu-Zn alloys increased with increasing Zn content,but tendency in the tensile and compressive strengths and ductility reversed after adding 1.5%-2%Zn.In addition,the friction coefficient and volume loss of the Al-12Si-3 Cu-Zn alloys decreased with increasing Zn content.The study showed that the addition of Zn to Al-12Si-3 Cu alloy can improve its potential applications as tribological material.展开更多
In order to explore the physiological and biochemical characteristics of fresh upper leaves and roots of different qualities of tobacco, the malonaldehyde (MDA), superoxide dismutase (SOD) activity, chlorophyllase...In order to explore the physiological and biochemical characteristics of fresh upper leaves and roots of different qualities of tobacco, the malonaldehyde (MDA), superoxide dismutase (SOD) activity, chlorophyllase activity, amylase activity, medium trace element content, chemical component content, root fresh weight, dry weight and activity in the normal tobacco leaves, tobacco leaves rich in nutrients and premature grey tobacco leaves were studied. The results showed that compared with the normal tobacco leaves, the root fresh weight, dry weight and activity in the premature grey tobacco leaves decreased by 41.22%, 14.44% and 60.29% respectively, while malonaldehyde content increased by 34.82%, and chlorophyllase, α-amylase, β-amylase and SOD activity declined by 89.55%, 65.71%, 71.26% and 37.25% respectively. Chlorophyllase, co-amylase and 13-amylase activity in the tobacco leaves rich in nutrients decreased by 58.76%, 36.19% and 41.93% respectively. The content of medium trace elements in the tobacco leaves rich in nutrients and premature grey tobacco leaves was lower than that of the normal tobacco leaves. Starch, total sugar, reducing sugar and potassium content in the normal tobacco leaves were higher than that of the tobacco leaves rich in nutrients and premature grey tobacco leaves.展开更多
The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five dos...The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.展开更多
基金financial supports from the National Key R&D Program of China (No.2023YFB3712400)National Natural Science Foundation of China (No.52371040)Joint Fund for Regional Innovation of Hunan Provincial Natural Science Foundation,China (No.2023JJ50333)。
文摘Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.
基金Project (2008890) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China
文摘Cemented tungsten carbide with ultra fine grains was prepared via microwave sintering.η phase(W3Co3C) was formed on the surface of the samples during the preparation process.Extra carbon black was premixed and the influence of carbon content on mechanical properties was studied.The results show that the maximum value of hardness and transverse rupture strength are HRA 93.2 and 3396 MPa respectively when the carbon black content is 0.45%.The microstructure investigated by SEM show that the WC grains growth mainly occurs during the early stage of microwave sintering by the coalescence of grains.
基金Project(2012CB619505)supported by the National Basic Research Program of ChinaProject(NCET-13-0370)supported by the Program for New Century Excellent Talents in Universities of China
文摘Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.
基金Project (2011ZX04014-052,2012ZX04012011) supported by CNC Machine Tools and Basic Manufacturing Equipment Technology Comments
文摘The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.
文摘Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.
文摘The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
文摘Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.
文摘Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.
文摘A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.
基金supported by the KMB project (193179/I40) in NorwayThe financial support by the Research Council of Norway and the industrialpartners, Hydro Aluminium and Sapa Technology
文摘Microstructural evolution of a cold-rolled Al-Mn-Fe-Si alloy during annealing was studied. Except the as-cast variant, two other different homogenizations were considered, one gave a high density of fine dispersiods providing a considerable Zener drag influencing the softening behavior while the other gave a lower density of coarser dispersoid structure providing a much smaller drag effect. The gradual microstructural evolutions during annealing for the three variants were captured by interrupting annealing at different time. Effects of microchemistry state on recrystallization kinetics, recrystallized grain structure and texture were characterized by EBSD. It is demonstrated that the actual softening kinetics, final microstructure and texture are a result of delicate balance between processing condition and microchemistry state. Strong concurrent precipitation takes place in the case with high concentration of Mn in solid solution, which suppresses nucleation and retards recrystallization and finally leads to grain structure of coarse elongated grains dominated by a P texture component together with a ND-rotated cube component. On the contrary, when solute content of Mn is low and pre-existing dispersoids are relatively coarser, faster recrystallization kinetics is exhibited together with an equiaxed grain structure with mainly cube texture.
基金the Priority Academic Program Development of Jiangsu Higher Education Institution and Beijing Institute of Aeronautical Materials(No.KZ82171509).
文摘TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality inspection of the joint were studied.The results show that the microstructure of the weld consists of a large number of acicularα′andβblock.The microhardness curve shows that the microhardness value in the fusion zone(FZ)of the joint is significantly higher than that in the heat affected zone(HAZ)and the base metal(BM),and the microhardness of the base metal is the lowest.The tensile strength of the joint is equivalent to that of the base metal,and the fracture morphology shows that the fracture mechanism of the joint is mixed ductile-brittle fracture mode.The weld quality is excellent through chemical inspection,penetrant inspection and X-ray inspection.
基金Project(2016YFB0300901) supported by the National Key R&D Program of China Project(51421001) supported by the National Natural Science Foundation of China Project(2018CDJDCL0019) supported by the Fundamental Research Funds for the Central Universities, China
文摘The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.
文摘The effects of Zn content on strength and wear performance of Al-12Si-3 Cu alloy synthesized by gravity casting were systematically investigated.The microstructure and mechanical properties of the alloys were evaluated using OM,XRD,SEM as well as hardness,tension,compression and Charpy impact tests.Their dry sliding wear tests were carried out with a ball-on-disk tester.Microscopic examinations revealed that the microstructure of the base alloy consisted of theα(Al)dendrites,needle-type and coarse Si particles,and CuAl2(θ)phase.The addition of Zn to this alloy resulted in the formation ofα-solid solution phase and the increase of coarse Si particles.The hardness,yield,tensile and compressive strengths,elongation to fracture and impact toughness of the Al-12Si-3 Cu-Zn alloys increased with increasing Zn content,but tendency in the tensile and compressive strengths and ductility reversed after adding 1.5%-2%Zn.In addition,the friction coefficient and volume loss of the Al-12Si-3 Cu-Zn alloys decreased with increasing Zn content.The study showed that the addition of Zn to Al-12Si-3 Cu alloy can improve its potential applications as tribological material.
基金Supported by Science and Technology Project of Changsha Tobacco Company of Hunan Province(CYKJ2015-03)~~
文摘In order to explore the physiological and biochemical characteristics of fresh upper leaves and roots of different qualities of tobacco, the malonaldehyde (MDA), superoxide dismutase (SOD) activity, chlorophyllase activity, amylase activity, medium trace element content, chemical component content, root fresh weight, dry weight and activity in the normal tobacco leaves, tobacco leaves rich in nutrients and premature grey tobacco leaves were studied. The results showed that compared with the normal tobacco leaves, the root fresh weight, dry weight and activity in the premature grey tobacco leaves decreased by 41.22%, 14.44% and 60.29% respectively, while malonaldehyde content increased by 34.82%, and chlorophyllase, α-amylase, β-amylase and SOD activity declined by 89.55%, 65.71%, 71.26% and 37.25% respectively. Chlorophyllase, co-amylase and 13-amylase activity in the tobacco leaves rich in nutrients decreased by 58.76%, 36.19% and 41.93% respectively. The content of medium trace elements in the tobacco leaves rich in nutrients and premature grey tobacco leaves was lower than that of the normal tobacco leaves. Starch, total sugar, reducing sugar and potassium content in the normal tobacco leaves were higher than that of the tobacco leaves rich in nutrients and premature grey tobacco leaves.
基金Project supported by the EU and the Spanish Ministry of Science and Technology.
文摘The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.