The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology,...The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology, microstructure and microhardness of powder and fine powder ratio were investigated.The results show that the morphology, microstructure and microhardness of powder and fine powder ratio are affected by cooling velocity changed through atomization gas. The cooling velocity of inert gas atomization is more than 1×10~4 K/s. The larger the cooling velocity, the finer the powder, and the smoother the surface of powder; the smaller the diameter of powder, the larger the microhardness of powder.展开更多
The microwave technology was introduced for the desulfurization of diesel fuel. The atmosphericsecond side-cut diesel fraction, which was supplied by Liaohe Petrochemical Company, was desulfurized by anoxidation proce...The microwave technology was introduced for the desulfurization of diesel fuel. The atmosphericsecond side-cut diesel fraction, which was supplied by Liaohe Petrochemical Company, was desulfurized by anoxidation process under microwave irradiation. Hydrogen peroxide (H2O2), can oxidize the sulfur compounds indiesel fuel selectively and convert them into sulfones. Based on the rule of dissolution by similar substances,these sulfones are removed from diesel fuel because they could be dissolved in solvent phase. So the sulfurcontent of diesel fuel is decreased. The influence of the concentration of oxidizing reagent, solvent phase to oilphase volume ratio (S/O), irradiation pressure, irradiation time, and the irradiation power have been investigated.The optimum conditions for the refining process was determined. The sulfur removal rate was 59.7% under theoptimum conditions of 8%H2O2, S/O=0.25, 0.05MPa, 6 min, and 375W, respectively. When no microwave irradia-tion was applied, the removal rate was 11.5% only.展开更多
This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wast...This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0–12 min) the adsorption rate was so rapid that 74% of the metal was bio- logically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 105 alga cells.展开更多
The mechanical properties dependence on the microstructure was reviewed and analyzed,and the ultrafine grained duplex microstructure of BCC matrix and large fractioned austenite was given as one of the optimum structu...The mechanical properties dependence on the microstructure was reviewed and analyzed,and the ultrafine grained duplex microstructure of BCC matrix and large fractioned austenite was given as one of the optimum structures to develop the third generation steel with high strength and high ductility.The medium-Mn steels with different carbon contents processed by austenite reverted transformation(ART-annealing) were studied thoroughly to fabricate the ultrafine duplex steels with large fractioned austenite.The lamellar typed ultrafine structure,the granular typed ultrafine duplex structure and the corresponding mechanical properties of the medium-Mn steels processed by ART-annealing were demonstrated in this paper.It was revealed that the duplex structure with large fraction of austenite and ultrafine grain structure is capable of producing steels with excellent combination of strength and ductility,i.e.,Rm A about 30-50 GPa%,which is about two times of that of the conventional automobile steels and close to that of the TWIP steels.It was concluded that the ART-annealing of the medium-Mn steels would be at least one of the promising ways to fabricate the third generation automobile steels in the near future.展开更多
文摘The Al-Ni-Y alloy powder was prepared by rapid solidification technology of inert gas atomization. The diameter of amorphous powder is less than 12 μm. The effects of atomization gas on cooling velocity, morphology, microstructure and microhardness of powder and fine powder ratio were investigated.The results show that the morphology, microstructure and microhardness of powder and fine powder ratio are affected by cooling velocity changed through atomization gas. The cooling velocity of inert gas atomization is more than 1×10~4 K/s. The larger the cooling velocity, the finer the powder, and the smoother the surface of powder; the smaller the diameter of powder, the larger the microhardness of powder.
文摘The microwave technology was introduced for the desulfurization of diesel fuel. The atmosphericsecond side-cut diesel fraction, which was supplied by Liaohe Petrochemical Company, was desulfurized by anoxidation process under microwave irradiation. Hydrogen peroxide (H2O2), can oxidize the sulfur compounds indiesel fuel selectively and convert them into sulfones. Based on the rule of dissolution by similar substances,these sulfones are removed from diesel fuel because they could be dissolved in solvent phase. So the sulfurcontent of diesel fuel is decreased. The influence of the concentration of oxidizing reagent, solvent phase to oilphase volume ratio (S/O), irradiation pressure, irradiation time, and the irradiation power have been investigated.The optimum conditions for the refining process was determined. The sulfur removal rate was 59.7% under theoptimum conditions of 8%H2O2, S/O=0.25, 0.05MPa, 6 min, and 375W, respectively. When no microwave irradia-tion was applied, the removal rate was 11.5% only.
文摘This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0–12 min) the adsorption rate was so rapid that 74% of the metal was bio- logically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 105 alga cells.
基金supported by the National Basic Research Program of China "973 program" (Grant No. 2010CB630803)
文摘The mechanical properties dependence on the microstructure was reviewed and analyzed,and the ultrafine grained duplex microstructure of BCC matrix and large fractioned austenite was given as one of the optimum structures to develop the third generation steel with high strength and high ductility.The medium-Mn steels with different carbon contents processed by austenite reverted transformation(ART-annealing) were studied thoroughly to fabricate the ultrafine duplex steels with large fractioned austenite.The lamellar typed ultrafine structure,the granular typed ultrafine duplex structure and the corresponding mechanical properties of the medium-Mn steels processed by ART-annealing were demonstrated in this paper.It was revealed that the duplex structure with large fraction of austenite and ultrafine grain structure is capable of producing steels with excellent combination of strength and ductility,i.e.,Rm A about 30-50 GPa%,which is about two times of that of the conventional automobile steels and close to that of the TWIP steels.It was concluded that the ART-annealing of the medium-Mn steels would be at least one of the promising ways to fabricate the third generation automobile steels in the near future.