A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set ...A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.展开更多
To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of pa...To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments.展开更多
Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider ...We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.展开更多
Consider a backward heat equation in a bounded domain Ω (?) R2 with the noisy data in the initial time geometry. The aim is to find the temperature for 0 < ε < t < T. For this ill-posed problem, the authors...Consider a backward heat equation in a bounded domain Ω (?) R2 with the noisy data in the initial time geometry. The aim is to find the temperature for 0 < ε < t < T. For this ill-posed problem, the authors give a continuous dependence estimate of the solution. Moreover, the convergence rate of the approximate solution is also given.展开更多
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully ...In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.展开更多
This paper considers dynamical systems under feedback with control actions limited toswitching.The authors wish to understand the closed-loop systems as approximating multi-scale problemsin which the implementation of...This paper considers dynamical systems under feedback with control actions limited toswitching.The authors wish to understand the closed-loop systems as approximating multi-scale problemsin which the implementation of switching merely acts on a fast scale.Such hybrid dynamicalsystems are extensively studied in the literature,but not much so far for feedback with partial stateobservation.This becomes in particular relevant when the dynamical systems are governed by partialdifferential equations.The authors introduce an augmented BV setting which permits recognition ofcertain fast scale effects and give a corresponding well-posedness result for observations with such minimalregularity.As an application for this setting,the authors show existence of solutions for systemsof semilinear hyperbolic equations under such feedback with pointwise observations.展开更多
基金Foundation item: Project(2012AA051603) supported by the National High Technology Research and Development Program 863 Plan of China
文摘A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.
基金Supported by the National Natural Science Foundation of China(No.61401496)
文摘To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
文摘We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call "transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.
基金Project supported by China Postdoctoral Science Foundation (No.2002031224) the Science Foundation of Southeast University (No. 9207011148).
文摘Consider a backward heat equation in a bounded domain Ω (?) R2 with the noisy data in the initial time geometry. The aim is to find the temperature for 0 < ε < t < T. For this ill-posed problem, the authors give a continuous dependence estimate of the solution. Moreover, the convergence rate of the approximate solution is also given.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61402188 and 61173050the support from the China Postdoctoral Science Foundation under Grant No.2014M552041
文摘In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.
基金support of the Elite Network of Bavaria under the grant #K-NW-2004-143
文摘This paper considers dynamical systems under feedback with control actions limited toswitching.The authors wish to understand the closed-loop systems as approximating multi-scale problemsin which the implementation of switching merely acts on a fast scale.Such hybrid dynamicalsystems are extensively studied in the literature,but not much so far for feedback with partial stateobservation.This becomes in particular relevant when the dynamical systems are governed by partialdifferential equations.The authors introduce an augmented BV setting which permits recognition ofcertain fast scale effects and give a corresponding well-posedness result for observations with such minimalregularity.As an application for this setting,the authors show existence of solutions for systemsof semilinear hyperbolic equations under such feedback with pointwise observations.