Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a co...To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.展开更多
In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm i...In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.展开更多
A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no availab...A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
This paper presents a control strategy of demand pulled spare parts inventory. It establishes a spare part demand prognosticating model based on reliability analysis. Through parts reliability data the model gets the...This paper presents a control strategy of demand pulled spare parts inventory. It establishes a spare part demand prognosticating model based on reliability analysis. Through parts reliability data the model gets the reliable life function of spare parts and determines parts demand time, depending on part life at given reliabilities. Moreover, a case study is taken to illuminate the demand prognostication and inventory control of on condition maintenance rotables.展开更多
The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, an...The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.展开更多
The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pin...The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.展开更多
Airbag buffer process was analyzed with the aid of aerodynamic and thermodynamic methods.Based on the current structure of the airbag,the terminal velocity was too high.Therefore,the research on the diameter and heigh...Airbag buffer process was analyzed with the aid of aerodynamic and thermodynamic methods.Based on the current structure of the airbag,the terminal velocity was too high.Therefore,the research on the diameter and height of the airbag was done and the feasible design area was found.With the optimized structure parameters,the airbag buffer experiment under normal conditions was conducted.Furthermore,the residual height and internal pressure of the airbag as well as the terminal velocity and acceleration of the airdrop were obtained.The experiment results show that the optimized airbag is feasible for 20 t cargo airdrop.展开更多
An immunosuppressive animal model induced by physical stress that forced mice to swim in cold water(14±1℃)and the restorative effect of Tremella polysac charide(TP)on the suppressed immune function by stress wer...An immunosuppressive animal model induced by physical stress that forced mice to swim in cold water(14±1℃)and the restorative effect of Tremella polysac charide(TP)on the suppressed immune function by stress were studied in mice.It was found that the spleen plaque forming cell(PFC)response to sheep red blood cells,delayed cuta- neous hypersensitivity(DCH)induced by dinitrochlorobenzene and the lymphocyte prolifer- ation stimulated by concanavalin A(Con A)were significantly decreased in stressed mice. In addition.the maximal decrease of PFC was reached in 9-12 days after stress.A- drenolectomy could not affect the decrease of PFC in stressed mice.TP(200.400mg/kg) ig for 8-14 days significantly restored the PFC.DCH and lymphocyte proliferation to nor- mal level in stressed mice.展开更多
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, e...The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.展开更多
Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scannin...Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.展开更多
Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July...Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.展开更多
The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the a...The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the analysis results,a set of equipment for controlling the indoor air quality(IAQ)of the toll booth is devised.Then,a full-scale model of the toll booth is set up in the laboratory.The airflow organization,the optimum operation parameters,and the restraint effects of the PV system on pollution are also experimentally studied.The experimental results on the air supply characteristics show that the PV system can effectively reduce the air age,improve the ventilation efficiency,and enhance the comfort and acceptability of human beings.In addition,this system plays a significant role in preventing pollution.展开更多
Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
Taking Zunyi City of Guizhou Province as research area, the research performed spatial dynamic analysis and elastic coefficient method to evaluate the e- conomical and intensive utilization of the regional constructio...Taking Zunyi City of Guizhou Province as research area, the research performed spatial dynamic analysis and elastic coefficient method to evaluate the e- conomical and intensive utilization of the regional construction land, and to discuss the decision direction for economical and intensive utilization of the regional con- struction land. The results showed that, the population based land utilization both in Zunyi and the city districts and counties indicated extensive trend. The economy- based land utilization in Zunyi City, as well as in Huichun, Zunyi and Tongzi County presented intensive trend, however the other districts and counties were in extensive tendency. It concluded that the economical and intensive utilization of construction land should be focused on the rural collective construction land, and the potential tapping of rural collective construction land in rocky desertification area should be the first priority, otherwise, the regional economic development was unbalanced be- tween different district and county in Zunyi.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
文摘To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.
基金The National Basic Research Program of China (973 Program) (No. 613121010202)
文摘In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.
基金The National Natural Science Foundation of China(No.50778094)
文摘A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
文摘This paper presents a control strategy of demand pulled spare parts inventory. It establishes a spare part demand prognosticating model based on reliability analysis. Through parts reliability data the model gets the reliable life function of spare parts and determines parts demand time, depending on part life at given reliabilities. Moreover, a case study is taken to illuminate the demand prognostication and inventory control of on condition maintenance rotables.
文摘The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.
文摘The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.
基金National Natural Science Foundation of China(No.51175481)
文摘Airbag buffer process was analyzed with the aid of aerodynamic and thermodynamic methods.Based on the current structure of the airbag,the terminal velocity was too high.Therefore,the research on the diameter and height of the airbag was done and the feasible design area was found.With the optimized structure parameters,the airbag buffer experiment under normal conditions was conducted.Furthermore,the residual height and internal pressure of the airbag as well as the terminal velocity and acceleration of the airdrop were obtained.The experiment results show that the optimized airbag is feasible for 20 t cargo airdrop.
文摘An immunosuppressive animal model induced by physical stress that forced mice to swim in cold water(14±1℃)and the restorative effect of Tremella polysac charide(TP)on the suppressed immune function by stress were studied in mice.It was found that the spleen plaque forming cell(PFC)response to sheep red blood cells,delayed cuta- neous hypersensitivity(DCH)induced by dinitrochlorobenzene and the lymphocyte prolifer- ation stimulated by concanavalin A(Con A)were significantly decreased in stressed mice. In addition.the maximal decrease of PFC was reached in 9-12 days after stress.A- drenolectomy could not affect the decrease of PFC in stressed mice.TP(200.400mg/kg) ig for 8-14 days significantly restored the PFC.DCH and lymphocyte proliferation to nor- mal level in stressed mice.
基金financially supported by the Key Program of National Natural Science Foundation of China(No.41530320)China Natural Science Foundation for Young Scientists(No.41404093)+1 种基金Key National Research Project of China(Nos2016YFC0303100 and 2017YFC0601900)China Natural Science Foundation(No.41774125)
文摘The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.
文摘Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.
文摘Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.
文摘The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the analysis results,a set of equipment for controlling the indoor air quality(IAQ)of the toll booth is devised.Then,a full-scale model of the toll booth is set up in the laboratory.The airflow organization,the optimum operation parameters,and the restraint effects of the PV system on pollution are also experimentally studied.The experimental results on the air supply characteristics show that the PV system can effectively reduce the air age,improve the ventilation efficiency,and enhance the comfort and acceptability of human beings.In addition,this system plays a significant role in preventing pollution.
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
基金Supported by Guiyang Science and Technology Project([2012103]81)Guizhou Science and Technology Project([2012]3058)~~
文摘Taking Zunyi City of Guizhou Province as research area, the research performed spatial dynamic analysis and elastic coefficient method to evaluate the e- conomical and intensive utilization of the regional construction land, and to discuss the decision direction for economical and intensive utilization of the regional con- struction land. The results showed that, the population based land utilization both in Zunyi and the city districts and counties indicated extensive trend. The economy- based land utilization in Zunyi City, as well as in Huichun, Zunyi and Tongzi County presented intensive trend, however the other districts and counties were in extensive tendency. It concluded that the economical and intensive utilization of construction land should be focused on the rural collective construction land, and the potential tapping of rural collective construction land in rocky desertification area should be the first priority, otherwise, the regional economic development was unbalanced be- tween different district and county in Zunyi.