In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis si...In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.展开更多
Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that ...The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that LARS-WG adequately predicted precipitation and temperature with R2 = 0.80 and 0.73, respectively. Likewise, p-value of F test = 0.062 and p-value of t test = 0.885 for precipitation, meanwhile, for temperature are 0.092 and 0.564 at 0.05 level of significance, respectively. Moreover, results also stated that mean annual precipitation increases 1.62%, 2.17% and 3.96% and mean annual temperature increases 0.6 ℃, 0.8 ℃ and 1.05 ℃ in 2020, 2030 and 2040, respectively, with respect to those from baseline periods. This study also showed that LARS-WG model was used successfully for Viet Nam's watershed conditions.展开更多
Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the '...Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the 'Urbanisation-Energy Consumption-COn Emissions System Dynamics (UEC-SD)' model using a system dynamics method. The UEC-SD model is applied to analyse the effect of the ar- banisation process on the regional energy structure and CO2 emissions, followed by simulation of future production and living energy consumption structure as well as the evolutionary trend of CO2 emissions of three urbanisation scenarios (low speed, intermediate speed and high speed) under the assumed boundary conditions in urban and rural areas of Liaoning Province, China. The results show that the urbanisation process can alter production and the living energy consumption structure and thereby change regional CO2 emissions. An increase in the urbanisation rate in case area will lead to regional COz emissions rising in the short term, but when the urbanisation rate approaches 80%, CO2 emissions will reach a peak value and then decrease. Comparison of different urbanisation rates showed that pro- duction and living energy consumption exhibit different directions of change and rules in urban and rural areas. The effect of urbanisa- tion on CO2 emissions and energy structure is not direct, and urbanisation can increase the differences in energy and CO2 emissions between urban and rural areas caused by the industrial structure, technical level and other factors.展开更多
The Yangtze River(YZR) regions have experienced rapid changes after opening up to economic reforms, and human activities have changed the land cover, ecology, and wildlife habitat quality. However, the specific ways i...The Yangtze River(YZR) regions have experienced rapid changes after opening up to economic reforms, and human activities have changed the land cover, ecology, and wildlife habitat quality. However, the specific ways in which those influencing factors changed the habitat quality during different periods remain unknown. This study assessed the wildlife habitat quality of the middle and lower YZR in the past(1980–2018) and in future scenarios(2050, 2100). We analyzed the relationships between habitat quality and various topological social-economic factors, and then mapped and evaluated the changes in habitat quality by using the Integrated Valuation of Environmental Services and Tradeoffs(InVEST) model. The results show that the slope(R = 0.502, P < 0.01, in 2015), elevation(R = 0.003, P < 0.05, in 2015), population density(R = –0.299, P < 0.01, in 2015), and NDVI(R = 0.366, P < 0.01, in 2015) in the study area were significantly correlated with habitat quality from 2000 to 2015. During the period of 1980–2018, 61.93% of the study area experienced habitat degradation and 38.07% of the study area had improved habitat quality. In the future, the habitat quality of the study area will decline under either the A2 scenario(high level of population density, low environmental technology input, and high traditional energy cost) or the B2 scenario(medium level of population density, medium green technology and lack of cooperation of regional governments). The results also showed that habitat in the lower reaches or north of the YZR had degraded more than in the middle reaches or the south of YZR. Therefore, regional development should put more effort into environmental protection, curb population growth, and encourage green technology innovation. Inter-province cooperation is necessary when dealing with ecological problems. This study can serve as a scientific reference for regional wildlife protection and similar investigations in different areas.展开更多
Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scien...Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scientific understanding of the pattern of land use evolution in the region.This paper analyzes the pattern of land use evolution in Tongzhou District over the past 40 years,from 1980 to 2020.According to the historical evolutionary characteristics of land use and urban development planning goals,combined with the driving factors of cultural tourism development,the Future Land-use Simulation(FLUS)model is used to simulate the spatial distribution of land use in Beijing MC(Tongzhou District)in 2035 under three scenarios of urbanization acceleration,deceleration and sustainable development.The results show three major trends.(1)Beijing MC(Tongzhou District)is dominated by urban development and construction.During the high-speed urbanization stage from 1980 to 2010,the urban expansion pattern of“along the Sixth Ring Road and along the Grand Canal”was formed.During the low-speed urbanization stage from 2010 to 2020,the land distribution was stable,and Tongzhou District formed a pattern of urban-rural differentiation and land intensification from northwest to southeast.As a typical area of Tongzhou District’s urbanization,Beijing MC has the same characteristics of the temporal and spatial evolution as Tongzhou as a whole.(2)By 2035,there are significant differences in land use among the three scenarios with respect to the magnitude of change and spatial distribution.The area and distribution of ecological land under the urban sustainable development scenario are optimal,which is conducive to the realization of sustainable urban development.In analyzing the degree of conformity with the three Beijing MC zoning plans,the prediction simulation under the sustainable development scenario is highly consistent with the land use of the“Beijing Municipal Administrative Center Regulatory Detailed Planning(Block Level)(2016–2035)”(hereinafter referred to as“Planning”)issued by the municipal government.However,there are certain deviations between the simulation predictions in the cultural tourism function area and the livable living scenery area and the corresponding“Planning”expectations.During the urban construction process,the internal ecological land area still needs to be increased.(3)Tongzhou District may lack a close connection between the urban and rural areas in the southeast.Potential risks such as the imbalance in the development of northern and southern townships require further attention in the development process.The prediction and simulation results of the model can provide certain data and methodological support for the construction of a harmonious and livable city in Beijing MC(Tongzhou District).展开更多
文摘In order to simulate changes in the water quality of the Miyun Reservoir dueto continuous descent of surface water level, a 3-D ecological hydrodynamic model was developedthrough coupling the water quality analysis simulation program (WASP) with the environmental fluiddynamics code (EFDC). The model was then calibrated and verified. Four scenarios (S1, S21, S22 andS23) were simulated using the model. Results show that the water quality of the Miyun Reservoirunder conditions of low surface water level is apparently affected by different amounts of inflowand different total phosphorus (TP) loadings. The chlorophyll-a concentration might exceed 10 μg/Lin many areas of the Miyun Reservoir (This limitative value is seen as a critical value ofeutrophication) when large loadings of TP enter due to the amount of inflow increasing. Results ofscenario S23 indicate that control of TP loadings can decrease chlorophyll-a concentrationeffectively, and the water quality of the Miyun Reservoir will improve or retain its status quo.
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
文摘The purpose of this paper is to apply "LARS-WG (Long Ashton Research Station--Weather Generator)" model to simulate the climate change scenarios for Phu Luong watershed in northem Viet Nam. Results indicated that LARS-WG adequately predicted precipitation and temperature with R2 = 0.80 and 0.73, respectively. Likewise, p-value of F test = 0.062 and p-value of t test = 0.885 for precipitation, meanwhile, for temperature are 0.092 and 0.564 at 0.05 level of significance, respectively. Moreover, results also stated that mean annual precipitation increases 1.62%, 2.17% and 3.96% and mean annual temperature increases 0.6 ℃, 0.8 ℃ and 1.05 ℃ in 2020, 2030 and 2040, respectively, with respect to those from baseline periods. This study also showed that LARS-WG model was used successfully for Viet Nam's watershed conditions.
基金Under the auspices of National Natural Science Foundation of China(No.41301637,41101117,41271186)Key Program of National Natural Science Foundation of China(No.71133003)
文摘Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the 'Urbanisation-Energy Consumption-COn Emissions System Dynamics (UEC-SD)' model using a system dynamics method. The UEC-SD model is applied to analyse the effect of the ar- banisation process on the regional energy structure and CO2 emissions, followed by simulation of future production and living energy consumption structure as well as the evolutionary trend of CO2 emissions of three urbanisation scenarios (low speed, intermediate speed and high speed) under the assumed boundary conditions in urban and rural areas of Liaoning Province, China. The results show that the urbanisation process can alter production and the living energy consumption structure and thereby change regional CO2 emissions. An increase in the urbanisation rate in case area will lead to regional COz emissions rising in the short term, but when the urbanisation rate approaches 80%, CO2 emissions will reach a peak value and then decrease. Comparison of different urbanisation rates showed that pro- duction and living energy consumption exhibit different directions of change and rules in urban and rural areas. The effect of urbanisa- tion on CO2 emissions and energy structure is not direct, and urbanisation can increase the differences in energy and CO2 emissions between urban and rural areas caused by the industrial structure, technical level and other factors.
基金The National Natural Science Foundation of China (41271534)The China Scholarship Council (201906770044)。
文摘The Yangtze River(YZR) regions have experienced rapid changes after opening up to economic reforms, and human activities have changed the land cover, ecology, and wildlife habitat quality. However, the specific ways in which those influencing factors changed the habitat quality during different periods remain unknown. This study assessed the wildlife habitat quality of the middle and lower YZR in the past(1980–2018) and in future scenarios(2050, 2100). We analyzed the relationships between habitat quality and various topological social-economic factors, and then mapped and evaluated the changes in habitat quality by using the Integrated Valuation of Environmental Services and Tradeoffs(InVEST) model. The results show that the slope(R = 0.502, P < 0.01, in 2015), elevation(R = 0.003, P < 0.05, in 2015), population density(R = –0.299, P < 0.01, in 2015), and NDVI(R = 0.366, P < 0.01, in 2015) in the study area were significantly correlated with habitat quality from 2000 to 2015. During the period of 1980–2018, 61.93% of the study area experienced habitat degradation and 38.07% of the study area had improved habitat quality. In the future, the habitat quality of the study area will decline under either the A2 scenario(high level of population density, low environmental technology input, and high traditional energy cost) or the B2 scenario(medium level of population density, medium green technology and lack of cooperation of regional governments). The results also showed that habitat in the lower reaches or north of the YZR had degraded more than in the middle reaches or the south of YZR. Therefore, regional development should put more effort into environmental protection, curb population growth, and encourage green technology innovation. Inter-province cooperation is necessary when dealing with ecological problems. This study can serve as a scientific reference for regional wildlife protection and similar investigations in different areas.
基金The National Natural Science Foundation of China(31470518)The Project Supported by Institute of Culture and Tourism Development of Beijing Technology and Business University(202106104)。
文摘Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scientific understanding of the pattern of land use evolution in the region.This paper analyzes the pattern of land use evolution in Tongzhou District over the past 40 years,from 1980 to 2020.According to the historical evolutionary characteristics of land use and urban development planning goals,combined with the driving factors of cultural tourism development,the Future Land-use Simulation(FLUS)model is used to simulate the spatial distribution of land use in Beijing MC(Tongzhou District)in 2035 under three scenarios of urbanization acceleration,deceleration and sustainable development.The results show three major trends.(1)Beijing MC(Tongzhou District)is dominated by urban development and construction.During the high-speed urbanization stage from 1980 to 2010,the urban expansion pattern of“along the Sixth Ring Road and along the Grand Canal”was formed.During the low-speed urbanization stage from 2010 to 2020,the land distribution was stable,and Tongzhou District formed a pattern of urban-rural differentiation and land intensification from northwest to southeast.As a typical area of Tongzhou District’s urbanization,Beijing MC has the same characteristics of the temporal and spatial evolution as Tongzhou as a whole.(2)By 2035,there are significant differences in land use among the three scenarios with respect to the magnitude of change and spatial distribution.The area and distribution of ecological land under the urban sustainable development scenario are optimal,which is conducive to the realization of sustainable urban development.In analyzing the degree of conformity with the three Beijing MC zoning plans,the prediction simulation under the sustainable development scenario is highly consistent with the land use of the“Beijing Municipal Administrative Center Regulatory Detailed Planning(Block Level)(2016–2035)”(hereinafter referred to as“Planning”)issued by the municipal government.However,there are certain deviations between the simulation predictions in the cultural tourism function area and the livable living scenery area and the corresponding“Planning”expectations.During the urban construction process,the internal ecological land area still needs to be increased.(3)Tongzhou District may lack a close connection between the urban and rural areas in the southeast.Potential risks such as the imbalance in the development of northern and southern townships require further attention in the development process.The prediction and simulation results of the model can provide certain data and methodological support for the construction of a harmonious and livable city in Beijing MC(Tongzhou District).