期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
让传统文化在大学德育课堂上“活起来” 被引量:1
1
作者 黄瑞英 《理工高教研究》 2009年第2期142-145,共4页
传统文化是大学德育中的重要内容。继承并弘扬传统文化,对于民族精神的发展、个体精神的安顿和道德人格的培养具有重要意义。但在追求科学理性与创新的现代社会,大学德育教学究竟如何才能获得教育实效,其中关键就是要让传统文化教育在... 传统文化是大学德育中的重要内容。继承并弘扬传统文化,对于民族精神的发展、个体精神的安顿和道德人格的培养具有重要意义。但在追求科学理性与创新的现代社会,大学德育教学究竟如何才能获得教育实效,其中关键就是要让传统文化教育在德育课堂上"活起来",即遵循"人性化德育"的教育理念,创设师生共同学习场景,使教材上的理论内容转化为学生的思想滋养与行为准则,完善学生的人格和道德品质。 展开更多
关键词 传统文化 大学德育 人性化德育 “意义场景”
下载PDF
Semantic segmentation method of road scene based on Deeplabv3+ and attention mechanism 被引量:6
2
作者 BAI Yanqiong ZHENG Yufu TIAN Hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期412-422,共11页
In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in acc... In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in accordance with the pixel level,so as to help vehicles to perceive and obtain the surrounding road environment information,which would improve driving safety.Deeplabv3+is the current popular semantic segmentation model.There are phenomena that small targets are missed and similar objects are easily misjudged during its semantic segmentation tasks,which leads to rough segmentation boundary and reduces semantic accuracy.This study focuses on the issue,based on the Deeplabv3+network structure and combined with the attention mechanism,to increase the weight of the segmentation area,and then proposes an improved Deeplabv3+fusion attention mechanism for road scene semantic segmentation method.First,a group of parallel position attention module and channel attention module are introduced on the Deeplabv3+encoding end to capture more spatial context information and high-level semantic information.Then,an attention mechanism is introduced to restore the spatial detail information,and the data shall be normalized in order to accelerate the convergence speed of the model at the decoding end.The effects of model segmentation with different attention-introducing mechanisms are compared and tested on CamVid and Cityscapes datasets.The experimental results show that the mean Intersection over Unons of the improved model segmentation accuracies on the two datasets are boosted by 6.88%and 2.58%,respectively,which is better than using Deeplabv3+.This method does not significantly increase the amount of network calculation and complexity,and has a good balance of speed and accuracy. 展开更多
关键词 autonomous driving road scene semantic segmentation Deeplabv3+ attention mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部