Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces....Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces.Piezoelectric flexible strain sensors are key components of wearable devices.However,existing piezoelectric flexible strain sensors have certain limitations in weak signal monitoring due to their large modulus and low sensitivity.To solve this problem,the concept of Kirigami(paper-cutting)was introduced in this study to design the sensor structure.By comparing the Kirigami structures of different basic structures,the serpentine structure was determined as the basic configuration of the sensor.The serpentine structure not only provides excellent tensile properties,but also significantly improves the sensitivity of the sensor,which performs well in monitoring weak signals.On this basis,the adhesion properties of the flexible sensor were analyzed and tested,and the optimal ratio of the substrate was selected for preparation.In addition,a low-cost and rapid prototyping process for stretchable patches was established in this study.Using this technology,we prepared the sensor device and tested its performance.Finally,we successfully developed a flexible sensor with a sensitivity of 0.128 mV/μɛand verified its feasibility for wrist joint motion monitoring applications.This result opens up new avenues for the recovery care of tenosynovitis patients after surgery.展开更多
The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain metho...The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.展开更多
In the current study, we determined concentrations and transfer rates of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn to Brown Birch Scaber Stalks (Leccinum scabrum) mushrooms emerged ...In the current study, we determined concentrations and transfer rates of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn to Brown Birch Scaber Stalks (Leccinum scabrum) mushrooms emerged in the area of Sudety Mountains (Sudetes) in Poland. Fruiting bodies and topsoil samples beneath L. scabrum were collected form the Ktodzka Dale. The trace elements were determined using validated method and inductively coupled plasma - atomic emission spectroscopy (ICP-AES) for final measurement. Mushrooms contained Ag, Cr, Hg, Co, Ni and Sr at 〈 1.0μg/g dry weight; Ba and Pb at -1.0μg/g dw; Cd at 〈 5μPg/g dw; Cu and Mn at 〉 10 μg/g dw; Al and Ca at -100μg/g dw; Fe, Na, Rb and Zn at lOO to 500μg/g dw, Mg at -1.000μg/g dw; P at -5,000 μg/g dw and K at -30,000 μg/g dw. Ca, Mn and Ni were nearly equally distributed between stipes and caps; stipes compared to caps were enriched in Ba, Na and Sr, while caps were enriched in Ag, Al, Cd, Co, Cr, Cu, Fe, K, P, Pb, Rb and Zn. The values of bioconcentration factor (BCF) varied highly depending on chemical element and were 〉1 for Ag, Cd, Cu, K, Mg, Na, P, Rb and Zn, while 〈1 for A1, Ba, Ca, Co, Cr, Fe, Mn, Ni, Pb and Sr. Topsoil showed elevated content of lead and mean concentration was 99 ± 32 μg/g dw, while cadmium was at 0.41 ± 0.15 and those two highly toxic to human elements occurred in edible caps of L. scabrum at 4.5 ± 2.2 and 2.9 ± 2.0 μg/g dw, respectively.展开更多
With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed ...With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed an integrated flexible sensing system with four nanowire-based sensors and a Ni microwire-based temperature sensor.The four nanowirebased sensors are three kinds of photodetectors responding to lights with different wavelengths and a gas sensor.Due to the large surface volume ratio and considerable sub wavelength effect,all the nanowire-based sensors show good sensing response and excellent linear relationship between sensitivity and temperature.The as-fabricated flexible sensing system can simultaneously detect environmental parameters,including temperature change,light intensities from UV-Visible to near infrared regions,and harmful gas concentration.Our flexible multifunctional sensing system therefore opens up a new way for the emerging portable and wearable electronics.展开更多
Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide meas...Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.展开更多
基金supported by National Natural Science Foundation of China(Nos.62301509,62304209)Key Research and Development Program of Shanxi Province(No.202302030201001)Fundamental Research Program of Shanxi Province(Nos.202203021222079,0210302123203,202103021223185).
文摘Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces.Piezoelectric flexible strain sensors are key components of wearable devices.However,existing piezoelectric flexible strain sensors have certain limitations in weak signal monitoring due to their large modulus and low sensitivity.To solve this problem,the concept of Kirigami(paper-cutting)was introduced in this study to design the sensor structure.By comparing the Kirigami structures of different basic structures,the serpentine structure was determined as the basic configuration of the sensor.The serpentine structure not only provides excellent tensile properties,but also significantly improves the sensitivity of the sensor,which performs well in monitoring weak signals.On this basis,the adhesion properties of the flexible sensor were analyzed and tested,and the optimal ratio of the substrate was selected for preparation.In addition,a low-cost and rapid prototyping process for stretchable patches was established in this study.Using this technology,we prepared the sensor device and tested its performance.Finally,we successfully developed a flexible sensor with a sensitivity of 0.128 mV/μɛand verified its feasibility for wrist joint motion monitoring applications.This result opens up new avenues for the recovery care of tenosynovitis patients after surgery.
基金The High Technology Research and Development Program of Jiangsu Province (NoBG2005001)the Hong Kong Inno-vation and Technology Fund (NoITS/99/02)
文摘The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.
基金supported in part by the National Science Centre(NCN) of Poland under Grant PRELUDIUM project NoUMO-2011/03/N/NZ9/04136the Chinese Academy of Science(Project No 2010T1Z26)
文摘In the current study, we determined concentrations and transfer rates of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn to Brown Birch Scaber Stalks (Leccinum scabrum) mushrooms emerged in the area of Sudety Mountains (Sudetes) in Poland. Fruiting bodies and topsoil samples beneath L. scabrum were collected form the Ktodzka Dale. The trace elements were determined using validated method and inductively coupled plasma - atomic emission spectroscopy (ICP-AES) for final measurement. Mushrooms contained Ag, Cr, Hg, Co, Ni and Sr at 〈 1.0μg/g dry weight; Ba and Pb at -1.0μg/g dw; Cd at 〈 5μPg/g dw; Cu and Mn at 〉 10 μg/g dw; Al and Ca at -100μg/g dw; Fe, Na, Rb and Zn at lOO to 500μg/g dw, Mg at -1.000μg/g dw; P at -5,000 μg/g dw and K at -30,000 μg/g dw. Ca, Mn and Ni were nearly equally distributed between stipes and caps; stipes compared to caps were enriched in Ba, Na and Sr, while caps were enriched in Ag, Al, Cd, Co, Cr, Cu, Fe, K, P, Pb, Rb and Zn. The values of bioconcentration factor (BCF) varied highly depending on chemical element and were 〉1 for Ag, Cd, Cu, K, Mg, Na, P, Rb and Zn, while 〈1 for A1, Ba, Ca, Co, Cr, Fe, Mn, Ni, Pb and Sr. Topsoil showed elevated content of lead and mean concentration was 99 ± 32 μg/g dw, while cadmium was at 0.41 ± 0.15 and those two highly toxic to human elements occurred in edible caps of L. scabrum at 4.5 ± 2.2 and 2.9 ± 2.0 μg/g dw, respectively.
基金supported by the National Natural Science Foundation of China(61874111 and 61625404)the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)China Postdoctoral Science Foundation(2016M601131)。
文摘With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed an integrated flexible sensing system with four nanowire-based sensors and a Ni microwire-based temperature sensor.The four nanowirebased sensors are three kinds of photodetectors responding to lights with different wavelengths and a gas sensor.Due to the large surface volume ratio and considerable sub wavelength effect,all the nanowire-based sensors show good sensing response and excellent linear relationship between sensitivity and temperature.The as-fabricated flexible sensing system can simultaneously detect environmental parameters,including temperature change,light intensities from UV-Visible to near infrared regions,and harmful gas concentration.Our flexible multifunctional sensing system therefore opens up a new way for the emerging portable and wearable electronics.
基金the funding support from the National Natural Science Foundation of China (51605449, 51675493 and 51705476)Shanxi “1331 Project” Key Subject Construction (1331KSC)
文摘Flexible pressure sensors have attracted great attention due to their potential in the wearable devices market and in particular in human-machine interactive interfaces.Pressure sensors with high sensitivity,wide measurement range,and low-cost are now highly desired for such practical applications.In the present investigation,an ultrasensitive pressure sensor with wide measurement range has been successfully fabricated.Carbon nanotubes(CNTs)(uniformly sprayed on the surface of paper)comprise the sensitivity material,while lithographed interdigital electrodes comprise the substrate.Due to the synergistic effects of CNT’s high specific surface area,paper’s porous structure,interdigital electrodes’efficient contact with CNT,our pressure sensor realizes a wide measurement range from 0 to 140 kPa and exhibits excellent stability through 15,000 cycles of testing.For the paper-based CNT film/interdigitated structure(PCI)pressure sensor,the connection area between the sensitive material and interdigital electrodes dominates in the lowpressure region,while internal change within the sensitive materials plays the leading role in the high-pressure region.Additionally,the PCI pressure sensor not only displays a high sensitivity of 2.72 kPa–1(up to 35 kPa)but also can detect low pressures,such as that exerted by a resting mung bean(about 8 Pa).When attached to the surface of a human body,the pressure sensor can monitor physiological signals,such as wrist movement,pulse beats,or movement of throat muscles.Furthermore,the pressure sensor array can identify the spatial pressure distribution,with promising applications in humanmachine interactive interfaces.