There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-...There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.展开更多
Molecular kinetics underlies all biological phenomena and, like many other biological processes, may best be understood in terms of networks. These networks, called Markov state models (MSMs), are typically built fr...Molecular kinetics underlies all biological phenomena and, like many other biological processes, may best be understood in terms of networks. These networks, called Markov state models (MSMs), are typically built from physical simulations. Thus, they are capable of quantitative prediction of experiments and can also provide an intuition for complex couformational changes. Their primary application has been to protein folding; however, these technologies and the insights they yield are transferable. For example, MSMs have already proved useful in understanding human diseases, such as protein misfolding and aggregation in Alzheimer's disease.展开更多
In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. ...In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. Autophagy refers to the process through which the impaired organelles, misfolded protein, and intruding microorganisms is degraded by lysosomes to maintain stability inside cells. This article states the effect of autophagy on liver diseases (hepatic fibrosis, fatty liver, viral hepatitis, and liver cancer), which aims to provide a new direction for the treatment of liver diseases.展开更多
Dear Editor,Hepatitis C virus(HCV)is a positive-strand RNA virus that belongs to the genus Hepacivirus within the Flaviviridae family.HCV causes chronic liver diseases,and185 million people are infected(Messina et ...Dear Editor,Hepatitis C virus(HCV)is a positive-strand RNA virus that belongs to the genus Hepacivirus within the Flaviviridae family.HCV causes chronic liver diseases,and185 million people are infected(Messina et al.,2015).Currently,there is no approved vaccine to prevent hepatitis C.HCV induces autophagy through elevating reactive oxygen species(ROS)levels via the unfolded protein response (UPR) or via direct interference with the autophagic pathway.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 30470587, No. 30600197).
文摘There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases.
文摘Molecular kinetics underlies all biological phenomena and, like many other biological processes, may best be understood in terms of networks. These networks, called Markov state models (MSMs), are typically built from physical simulations. Thus, they are capable of quantitative prediction of experiments and can also provide an intuition for complex couformational changes. Their primary application has been to protein folding; however, these technologies and the insights they yield are transferable. For example, MSMs have already proved useful in understanding human diseases, such as protein misfolding and aggregation in Alzheimer's disease.
基金Supported by the National Natural Science Foundation of China(81373465)
文摘In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. Autophagy refers to the process through which the impaired organelles, misfolded protein, and intruding microorganisms is degraded by lysosomes to maintain stability inside cells. This article states the effect of autophagy on liver diseases (hepatic fibrosis, fatty liver, viral hepatitis, and liver cancer), which aims to provide a new direction for the treatment of liver diseases.
基金supported by grants from the National Natural Science Foundation of China(81471955,81672035,81301438)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2016-I2M-3-020)+2 种基金the National Key Plan for Research and Development of China(2016YFD0500300)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13007)the Fundamental Research Funds for the Central Universities,the PUMC Youth Fund(3332016085)
文摘Dear Editor,Hepatitis C virus(HCV)is a positive-strand RNA virus that belongs to the genus Hepacivirus within the Flaviviridae family.HCV causes chronic liver diseases,and185 million people are infected(Messina et al.,2015).Currently,there is no approved vaccine to prevent hepatitis C.HCV induces autophagy through elevating reactive oxygen species(ROS)levels via the unfolded protein response (UPR) or via direct interference with the autophagic pathway.