On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent grow...On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.展开更多
This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-w...This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-where Ω∈R N is a bounded domain with smooth boundary Ω,m,n,p are positive constants, γ is the outward normal vector. The necessary and sufficient conditions for the global existence of solutions are obtained.展开更多
The method of few-body physics is applied to calculating the energy levels of low-lying states ofa positro-nium negative ion in a parabolic quantum well. The results show that the energy levels of a positronium negati...The method of few-body physics is applied to calculating the energy levels of low-lying states ofa positro-nium negative ion in a parabolic quantum well. The results show that the energy levels of a positronium negativeion intwo-dimensional case are lower than those in three-dimensional case.展开更多
This paper deals with the oscillatory properties of a class of nonlinear neutralparabolic partial differential equations with several delays. Sufficient criteria for the equa-tion to be oscillatory are obtained by mak...This paper deals with the oscillatory properties of a class of nonlinear neutralparabolic partial differential equations with several delays. Sufficient criteria for the equa-tion to be oscillatory are obtained by making use of some results of first-order functionaldifferential inequalities. These results fully reveal the essential difference between this typeand that without delays.展开更多
Asymptotical properties for the solutions of neutral parabolic systems with Robin boundary conditions were analyzed by using the inequality analysis.The oscillations problems for the neutral parabolic systems were con...Asymptotical properties for the solutions of neutral parabolic systems with Robin boundary conditions were analyzed by using the inequality analysis.The oscillations problems for the neutral parabolic systems were considered and some oscillation criteria for the systems were established.展开更多
This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t...In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t)=(u^p11v^p12)(1,t),vx(1,t)=(u^p21v^p22)(1,t),t∈(0,T),u(x,0)=u0(x),v(x,0)=v0(x),x∈(0,1)We will prove that there exist two positive constants such that:c≤max x∈[0,1]u(x,t)(T-t)^r(l1-1)≤C,0〈t〈T,c≤max x∈[0,1] v(x,t)(T-t)^1/(t1-1)≤C,0〈t〈T.where l1=l21α/α2+l22,r=α1/α2〉1,α1≤α2〈0.展开更多
In this paper, we study the notion of the enlarged observability for distributed parabolic systems, where the aim is to reconstruct the initial state between two prescribed profiles P1 and P2 in an internal subregion ...In this paper, we study the notion of the enlarged observability for distributed parabolic systems, where the aim is to reconstruct the initial state between two prescribed profiles P1 and P2 in an internal subregion c0 of the evolution domain f2. We give some definitions and properties of this concept, and then we solve the problem of the reconstruction of initial state using the Hilbert Uniqueness Method (HUM). This leads to several interesting results which are performed through numerical example and simulations.展开更多
This paper is devoted to the investigation of the asymptotic behavior for a class of nonlinear parabolic partial functional differential equations. The boundedness and stability of the solutions are established by the...This paper is devoted to the investigation of the asymptotic behavior for a class of nonlinear parabolic partial functional differential equations. The boundedness and stability of the solutions are established by the upper-lower solution method. Some conditions are obtained by using the semigroup theory, the properties of nonnegative matrices and the techniques of inequalities to determine the asymptotically stable region of the equilibrium.展开更多
The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Cle...The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Clearly, the above equation has strong degeneracy, i.e., the set of zero points of φ'(.) is permitted to have zero measure. This is an answer to an open problem in [13, p. 288].展开更多
This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variati...This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.展开更多
This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient ...This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient conditions for the global existence of solution are obtained.展开更多
Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation c...Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.展开更多
Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈...Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.展开更多
A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By intr...A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.展开更多
A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz...A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.展开更多
The main purpose of this paper is to overview some recent methods and results on controllability/observability problems for systems governed by partial differential equations. First, the authors review the theory for ...The main purpose of this paper is to overview some recent methods and results on controllability/observability problems for systems governed by partial differential equations. First, the authors review the theory for linear partial differential equations, including the iteration method for the null controllability of the time-invariant heat equation and the Rellich-type multiplier method for the exact controllability of the time-invariant wave equation, and especially a unified controllability/observability theory for parabolic and hyperbolic equations based on a global Carleman estimate. Then, the authors present sharp global controllability results for both semi-linear parabolic and hyperbolic equations, based on linearization approach, sharp observability estimates for the corresponding linearized systems and the fixed point argument. Finally, the authors survey the local null controllability result for a class of quasilinear parabolic equations based on the global Carleman estimate, and the local exact controllability result for general hyperbolic equations based on a new unbounded perturbation techniaue.展开更多
文摘On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
文摘This paper deals with the existence and nonexistence of global positive solutions of the following quasilinear parabolic equations:u t=1m△u m-u n, x∈Ω,t>0 1m·u mv=u p,x∈Ω,t>0 u(x,0)=u 0(x)>0,x∈Ω-where Ω∈R N is a bounded domain with smooth boundary Ω,m,n,p are positive constants, γ is the outward normal vector. The necessary and sufficient conditions for the global existence of solutions are obtained.
文摘The method of few-body physics is applied to calculating the energy levels of low-lying states ofa positro-nium negative ion in a parabolic quantum well. The results show that the energy levels of a positronium negativeion intwo-dimensional case are lower than those in three-dimensional case.
基金Supported by the National Natural Science Foundation of China(40373003, 40372121)Supported by the Youth Foundation of Cina University of Geosciences(CUGQNL0517)
文摘This paper deals with the oscillatory properties of a class of nonlinear neutralparabolic partial differential equations with several delays. Sufficient criteria for the equa-tion to be oscillatory are obtained by making use of some results of first-order functionaldifferential inequalities. These results fully reveal the essential difference between this typeand that without delays.
文摘Asymptotical properties for the solutions of neutral parabolic systems with Robin boundary conditions were analyzed by using the inequality analysis.The oscillations problems for the neutral parabolic systems were considered and some oscillation criteria for the systems were established.
文摘This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
文摘In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t)=(u^p11v^p12)(1,t),vx(1,t)=(u^p21v^p22)(1,t),t∈(0,T),u(x,0)=u0(x),v(x,0)=v0(x),x∈(0,1)We will prove that there exist two positive constants such that:c≤max x∈[0,1]u(x,t)(T-t)^r(l1-1)≤C,0〈t〈T,c≤max x∈[0,1] v(x,t)(T-t)^1/(t1-1)≤C,0〈t〈T.where l1=l21α/α2+l22,r=α1/α2〉1,α1≤α2〈0.
文摘In this paper, we study the notion of the enlarged observability for distributed parabolic systems, where the aim is to reconstruct the initial state between two prescribed profiles P1 and P2 in an internal subregion c0 of the evolution domain f2. We give some definitions and properties of this concept, and then we solve the problem of the reconstruction of initial state using the Hilbert Uniqueness Method (HUM). This leads to several interesting results which are performed through numerical example and simulations.
基金Supported by NNSFC(19971059)Education Burean of Sichuan Province(01LA43)
文摘This paper is devoted to the investigation of the asymptotic behavior for a class of nonlinear parabolic partial functional differential equations. The boundedness and stability of the solutions are established by the upper-lower solution method. Some conditions are obtained by using the semigroup theory, the properties of nonnegative matrices and the techniques of inequalities to determine the asymptotically stable region of the equilibrium.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE(No.[2000]26)the 973 Project of the Ministry of Science and Technology of China(No.2006CB805902)+1 种基金the National Natural Science Foundation of China(No.10571072)the Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education of China and the 985 Project of Jilin University.
文摘The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Clearly, the above equation has strong degeneracy, i.e., the set of zero points of φ'(.) is permitted to have zero measure. This is an answer to an open problem in [13, p. 288].
基金supported by the National Science Foundation of China under Grant Nos.71171164 and 70471057the Doctorate Foundation of Northwestern Polytechnical University under Grant No.CX201235
文摘This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.
文摘This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient conditions for the global existence of solution are obtained.
基金supported by Laboratory of Mathematics and Complex Systems,National Natural Science Foundation of China(Grant No.11131003)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.
基金Project supported by the Fujian Provincial Natural Science Foundation of China (No. 2012J01011)Pan Jinglong’s Natural Science Foundation of Jimei University (No. ZC2010019)
文摘Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.
基金Project supported by the National Basic Research Program (973) of China (No 90505015)the National Natural Science Foundation of China (Nos 90816006 and 10732050)
文摘A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
基金supported by the Natural Science Foundation of China under Grant Nos.10671184 and 10971203
文摘A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.
基金supported by the National Science Foundation of China under Grant Nos. 10831007,60821091,and 60974035the project MTM2008-03541 of the Spanish Ministry of Science and Innovation
文摘The main purpose of this paper is to overview some recent methods and results on controllability/observability problems for systems governed by partial differential equations. First, the authors review the theory for linear partial differential equations, including the iteration method for the null controllability of the time-invariant heat equation and the Rellich-type multiplier method for the exact controllability of the time-invariant wave equation, and especially a unified controllability/observability theory for parabolic and hyperbolic equations based on a global Carleman estimate. Then, the authors present sharp global controllability results for both semi-linear parabolic and hyperbolic equations, based on linearization approach, sharp observability estimates for the corresponding linearized systems and the fixed point argument. Finally, the authors survey the local null controllability result for a class of quasilinear parabolic equations based on the global Carleman estimate, and the local exact controllability result for general hyperbolic equations based on a new unbounded perturbation techniaue.