Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. D...Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. Due to a higher SST over the western Pacific warm pool in the proceeding winter and spring, warm pool convection in summer is enhanced, leading to a cyclonic anomaly in the subtropical western Pacific. As a result, the western Pacific subtropical high is located more northeastward, and the seasonal march in East Asia is thus accelerated.This anomalous pattern tends to change with the seasonal march, with a maximum anomaly in July. Besides, there is less Mei-yu rainfall in the Yangtze River basin, with an earlier start and termination. The rainfall distribution in East Asia during La Nino years is characterized bya zonal pattern of less rainfall in eastern China and more rainfall over the oceanic region of the western Pacific. By comparison, a meridional pattern is found during El Nino years, with less rainfall in the tropics and more rainfall in the subtropics and midlatitudes. Therefore, the influence of La Nino on the EASM cannot be simply attributed to an antisymmetric influence of El Nino.展开更多
Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme pr...Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme precipitation events. Based on this, the relationship of ENSO and the frequency of extreme precipitation events is studied. Results reveal that ENSO events have impact on extreme precipitation events, with different magnitudes at different regions and seasons. In general, during winter and spring, extreme precipitation events occur more often during E1 Nino events than during La Nina events. While during summer and autumn, the opposite is found. The relationship of a two season-lag ENSO and extreme precipitation frequency shows different pattern. Extreme precipitation events occur more often in several regions if an ENSO warm phase happened in the central-eastern tropical Pacific two seasons before. No similar impacts of El Nino and La Nina on the frequency of extreme precipitation events are found.展开更多
The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The ...The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm- ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(l), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(l), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).展开更多
基金supported by the National Natural Science Foundation of China[grant number 41475052]
文摘Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. Due to a higher SST over the western Pacific warm pool in the proceeding winter and spring, warm pool convection in summer is enhanced, leading to a cyclonic anomaly in the subtropical western Pacific. As a result, the western Pacific subtropical high is located more northeastward, and the seasonal march in East Asia is thus accelerated.This anomalous pattern tends to change with the seasonal march, with a maximum anomaly in July. Besides, there is less Mei-yu rainfall in the Yangtze River basin, with an earlier start and termination. The rainfall distribution in East Asia during La Nino years is characterized bya zonal pattern of less rainfall in eastern China and more rainfall over the oceanic region of the western Pacific. By comparison, a meridional pattern is found during El Nino years, with less rainfall in the tropics and more rainfall in the subtropics and midlatitudes. Therefore, the influence of La Nino on the EASM cannot be simply attributed to an antisymmetric influence of El Nino.
基金supported by the program under Grant No.2007BAC29B04
文摘Based on a daily precipitation observation dataset of 743 stations in China from 1951 2004, the F distribution function is used to calculate the probability distribution of daily precipitation and to define extreme precipitation events. Based on this, the relationship of ENSO and the frequency of extreme precipitation events is studied. Results reveal that ENSO events have impact on extreme precipitation events, with different magnitudes at different regions and seasons. In general, during winter and spring, extreme precipitation events occur more often during E1 Nino events than during La Nina events. While during summer and autumn, the opposite is found. The relationship of a two season-lag ENSO and extreme precipitation frequency shows different pattern. Extreme precipitation events occur more often in several regions if an ENSO warm phase happened in the central-eastern tropical Pacific two seasons before. No similar impacts of El Nino and La Nina on the frequency of extreme precipitation events are found.
基金supported by the National Basic Research Program of China(2012CB955603,2010CB950302)the Chinese Academy of Sciences(XDA05090404,LT-0ZZ1202)
文摘The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with E1 Nifio/La Nifia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm- ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(l), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(l), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).