Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with ...Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with the increase of grain size or the decrease of number of grains across the diameter, the flow stress decreases and inhomogeneous deformation degree increases. When there are less than 9.3 grains across the diameter, the flow stress decreases quickly with the increase of grain size. Then, the flow stress size effect in micro tension of fine wires is revealed by a proposed model by introducing the grain boundary size factor. These results also indicate that both the fracture strain and stress decrease with the increase of grain size. When there are less than 14.7 grains across the diameter, both the fracture strain and stress decrease quickly. This indicates that the inhomogeneous deformation degree in micro tension increases with the decrease of the number of grains across the diameter. The fracture topography tends to be more and more irregular with the decrease of the number of grains across the diameter. Then, the formation mechanism of irregular fracture topography was analyzed considering the inhomogeneous distribution of microstructure when there are a few grains across the diameter.展开更多
Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,r...Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,relations among temperature,strain rate,and the flow stress are discussed. Constitutive equations under the warm tension are obtained based on revised Hooke law and Grosman equation. It is concluded that flow stress declines with the increase of the temperature and the decrease of the strain rates. The elongation percentage increases with the increase of the temperature and the decrease of strain rate.展开更多
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu...The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.展开更多
Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Rese...Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.展开更多
Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process i...Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.展开更多
AIM: To determine the seroprevalence of Hepatitis A (HAV) amongst Saudi children and compare it with previously reported prevalence data from the same population. METHODS: A total of 1357 students were randomly se...AIM: To determine the seroprevalence of Hepatitis A (HAV) amongst Saudi children and compare it with previously reported prevalence data from the same population. METHODS: A total of 1357 students were randomly selected between the ages of 16 and 18 years (689 males and 668 females) from three different regions of Saudi Arabia (Madinah, AI-Qaseem, and Aseer) and tested for anti-HAV-IgG.RESULTS: The overall prevalence of anti-HAV-IgG among the study population was 18.6%. There was no difference between males and females but there was a significant difference in the seroprevalence (P = 0.0001) between the three different regions, with Madinah region showing the highest prevalence (27.4%). When classified according to socioeconomic status, lower class students had a prevalence of 36.6%, lower middle class 16.6%, upper middle class 9.6%, and upper class 5.9% (P = 0.0001). Comparing the current study results with those of previous studies in 1989 and 1997 involving the same population, there was a marked reduction in the overall prevalence of HAV from 52% in 1989, to 25% in 1997, to 18.6% in 2008 (P 〈 0.0001).CONCLUSION: Over the last 18 years, there has been a marked decline in the prevalence of HAV in Saudi children and adolescents. The current low prevalence rates call for strict adherence to vaccination policies in high-risk patients and raises the question of a universal HAV vaccination program.展开更多
An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transvers...An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transverse magnetic field and generalized slip condition. Two flow problems corresponding to the planar and axisymmetric stretching/shrinking sheet were considered. By means of similarity transformations, the obtained resultant nonlinear ordinary differential equations were solved numerically using a shooting method for dual solutions of velocity and temperature profiles. Some important physical features of the flow and heat transfer in terms of the fluid velocity, the temperature distribution, the skin friction coefficient and the local Nusselt number for various values of the controlling governing parameters like velocity slip parameter, critical shear rate, magnetic field, ratio of stretching/shrinking rate to external flow rate and Prandtl number were analyzed and discussed. An increase of the critical shear rate decreases the fluid velocity whereas the local Nusselt number increases. The comparison of the present numerical results with the existing literature in a limiting case is given and found to be in an excellent agreement.展开更多
The kinetic theory of granular flow (KTGF) is modified to fit the Einstein′s equation for effective viscosity of dilute flow. A pseudo-fluid approach based on this modified KTGF is used to simulate the dynamic format...The kinetic theory of granular flow (KTGF) is modified to fit the Einstein′s equation for effective viscosity of dilute flow. A pseudo-fluid approach based on this modified KTGF is used to simulate the dynamic formation and dissipation of clusters in a circulating fluidized bed riser. The agglomeration of particles reduces slip velocity within particle clusters, and hence results in two reverse trends: discrete particles are lifted by air while particle clusters fall down along the wall. The dynamic equilibrium of these two types of motion leads to the characteristic sigmoid profile of solid concentration along the longitudinal direction. The predicted solid velocity, lateral and longitudinal profiles of solid volume fraction and annulus thickness are in reasonable agreement with experimental results.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possib...This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.展开更多
AIM: To value whether omeprazole could induce the healing of DIS and regression of symptoms in patients with DGER. METHODS: We enrolled 15 symptomatic patients with a pathological esophageal 24-h pH-metry and bilimetr...AIM: To value whether omeprazole could induce the healing of DIS and regression of symptoms in patients with DGER. METHODS: We enrolled 15 symptomatic patients with a pathological esophageal 24-h pH-metry and bilimetry. Patients underwent endoscopy and biopsies were taken from the distal esophagus. Specimens were analyzed at histology and transmission electron microscopy (TEM). Patients were treated with omeprazole 40 mg/d for 3 mo and then endoscopy with biopsies was repeated. Patients with persistent heartburn and/or with an incomplete recovery of DIS were treated for 3 more months and endoscopy with biopsies was performed. RESULTS: Nine patients had a non-erosive reflux disease at endoscopy (NERD) while 6 had erosive esophagitis (ERD). At histology, of the 6 patients with erosive esophagitis, 5 had mild esophagitis and 1 moderate esophagitis. No patients with NERD showed histological signs of esophagitis. After 3 mo of therapy, 13/15 patients (86.7%,P<0.01) showed a complete recovery of DIS and disappearance of heartburn. Of the 2 patients treated for 3 more months, complete recovery of DIS and heartburn were achieved in one. CONCLUSION: Three or 6 mo of omeprazole therapy led to a complete regression of the ultrastructural esophageal damage in 86.7% and in 93% of patients with DGER, NERD and ERD respectively. The ultrastructural recovery of the epithelium was accompanied by regression of heartburn in all cases.展开更多
The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were...The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.展开更多
The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleoso...The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.展开更多
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlin...In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.展开更多
s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for ...s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.展开更多
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous sim...The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.展开更多
AIM: To determine the prevalence and symptoms of gastroesophageal reflux disease (GERD) in a healthy general population in relation to demographic,lifestyle and health-seeking behaviors in Shiraz,southern Iran. METHOD...AIM: To determine the prevalence and symptoms of gastroesophageal reflux disease (GERD) in a healthy general population in relation to demographic,lifestyle and health-seeking behaviors in Shiraz,southern Iran. METHODS: A total of 1978 subjects aged > 35 years who referred to Gastroenterohepatology Research Center and who completed a questionnaire consisting of 27 questions for GERD in relation to demographic,lifestyle and health-seeking behaviors were included in this study for a period of five months. The validity and reliability of the questionnaire were determined. RESULTS: The prevalence of GERD was 15.4%,which was higher in females (17.3%),in rural areas (19.8%),and in illiterate subjects (21.5%) and those with a mean age of 50.25 years. The prevalence was significantly lower in subjects having fried food (14.8%),and fruit and vegetables (14.6%). More symptoms were noticed in subjects consuming pickles (22.1%),taking aspirin (21%) and in subjects with psychological distresses (27.2%) and headaches (22%). The correlation was statistically significant between GERD and halitosis (18.3%),dyspepsia (30.6%),anxiety (19.5%),nightmares (23.9%) and restlessness (18.5%). Their health seeking behavior showed that there was a significant restriction of diet (20%),consumption of herbal medicine (19%),using over-the-counter drugs (29.9%) and consulting with physicians (24.8%). Presence of GERD symptoms was also significantly related to a previous family history of the disease (22.3%).CONCLUSION: GERD is more common in females,rural and illiterate subjects and correlated with consumption of pickles,occurrence of headache,psychological distress,dyspepsia,halitosis,anxiety,nightmare and restlessness,and a family history of GERD and aspirin intake,but the correlation was negative with consumption of fat and fiber intake.展开更多
This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by...This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.展开更多
基金Projects(51375111,51375113,51505101)supported by the National Natural Science Foundation of ChinaProject(2015M571407)supported by the China Postdoctoral Science Foundation
文摘Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with the increase of grain size or the decrease of number of grains across the diameter, the flow stress decreases and inhomogeneous deformation degree increases. When there are less than 9.3 grains across the diameter, the flow stress decreases quickly with the increase of grain size. Then, the flow stress size effect in micro tension of fine wires is revealed by a proposed model by introducing the grain boundary size factor. These results also indicate that both the fracture strain and stress decrease with the increase of grain size. When there are less than 14.7 grains across the diameter, both the fracture strain and stress decrease quickly. This indicates that the inhomogeneous deformation degree in micro tension increases with the decrease of the number of grains across the diameter. The fracture topography tends to be more and more irregular with the decrease of the number of grains across the diameter. Then, the formation mechanism of irregular fracture topography was analyzed considering the inhomogeneous distribution of microstructure when there are a few grains across the diameter.
基金Supported by the National Natural Science Foundation of China (50772095)the Graduate Innovation Foundation of Jiangsu Province (CX09B-073Z)~~
文摘Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,relations among temperature,strain rate,and the flow stress are discussed. Constitutive equations under the warm tension are obtained based on revised Hooke law and Grosman equation. It is concluded that flow stress declines with the increase of the temperature and the decrease of the strain rates. The elongation percentage increases with the increase of the temperature and the decrease of strain rate.
文摘The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University,China
文摘Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.
基金financially supported by the Fundamental Research Funds for the Central Universities of Central South University,China(No.2020zzts515)。
文摘Based on Fluent software,the gas−liquid two-phase flow in the horizontal stirred tank was simulated with SST k−ωturbulence model,Eulerian−Eulerian two-fluid model,and multi-reference flame method.The mixing process in the tank was calculated by tracer method.The results show that increasing the rotating speed or gas flow is conducive to a more uniform distribution of the gas phase and accelerates the mixing of the liquid phase.When the rotating speed exceeds 93 r/min,the relative power demand remains basically constant.The change in the inclination angle of the upper impeller has minimal effect on the gas phase distribution.When the inclination angle is 50°,the relative power demand reaches the maximum.An appropriate increase in the impeller distance from the bottom improves the gas holdup and gas phase distribution but increases the liquid phase mixing time.
基金Supported by Grant Number 113-27-AT ON6/6/2007 from King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
文摘AIM: To determine the seroprevalence of Hepatitis A (HAV) amongst Saudi children and compare it with previously reported prevalence data from the same population. METHODS: A total of 1357 students were randomly selected between the ages of 16 and 18 years (689 males and 668 females) from three different regions of Saudi Arabia (Madinah, AI-Qaseem, and Aseer) and tested for anti-HAV-IgG.RESULTS: The overall prevalence of anti-HAV-IgG among the study population was 18.6%. There was no difference between males and females but there was a significant difference in the seroprevalence (P = 0.0001) between the three different regions, with Madinah region showing the highest prevalence (27.4%). When classified according to socioeconomic status, lower class students had a prevalence of 36.6%, lower middle class 16.6%, upper middle class 9.6%, and upper class 5.9% (P = 0.0001). Comparing the current study results with those of previous studies in 1989 and 1997 involving the same population, there was a marked reduction in the overall prevalence of HAV from 52% in 1989, to 25% in 1997, to 18.6% in 2008 (P 〈 0.0001).CONCLUSION: Over the last 18 years, there has been a marked decline in the prevalence of HAV in Saudi children and adolescents. The current low prevalence rates call for strict adherence to vaccination policies in high-risk patients and raises the question of a universal HAV vaccination program.
文摘An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transverse magnetic field and generalized slip condition. Two flow problems corresponding to the planar and axisymmetric stretching/shrinking sheet were considered. By means of similarity transformations, the obtained resultant nonlinear ordinary differential equations were solved numerically using a shooting method for dual solutions of velocity and temperature profiles. Some important physical features of the flow and heat transfer in terms of the fluid velocity, the temperature distribution, the skin friction coefficient and the local Nusselt number for various values of the controlling governing parameters like velocity slip parameter, critical shear rate, magnetic field, ratio of stretching/shrinking rate to external flow rate and Prandtl number were analyzed and discussed. An increase of the critical shear rate decreases the fluid velocity whereas the local Nusselt number increases. The comparison of the present numerical results with the existing literature in a limiting case is given and found to be in an excellent agreement.
文摘The kinetic theory of granular flow (KTGF) is modified to fit the Einstein′s equation for effective viscosity of dilute flow. A pseudo-fluid approach based on this modified KTGF is used to simulate the dynamic formation and dissipation of clusters in a circulating fluidized bed riser. The agglomeration of particles reduces slip velocity within particle clusters, and hence results in two reverse trends: discrete particles are lifted by air while particle clusters fall down along the wall. The dynamic equilibrium of these two types of motion leads to the characteristic sigmoid profile of solid concentration along the longitudinal direction. The predicted solid velocity, lateral and longitudinal profiles of solid volume fraction and annulus thickness are in reasonable agreement with experimental results.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金Project(IFP-A-2022-2-5-24) supported by Institutional Fund Projects,University of Hafr Al Batin,Saudi Arabia。
文摘This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.
文摘AIM: To value whether omeprazole could induce the healing of DIS and regression of symptoms in patients with DGER. METHODS: We enrolled 15 symptomatic patients with a pathological esophageal 24-h pH-metry and bilimetry. Patients underwent endoscopy and biopsies were taken from the distal esophagus. Specimens were analyzed at histology and transmission electron microscopy (TEM). Patients were treated with omeprazole 40 mg/d for 3 mo and then endoscopy with biopsies was repeated. Patients with persistent heartburn and/or with an incomplete recovery of DIS were treated for 3 more months and endoscopy with biopsies was performed. RESULTS: Nine patients had a non-erosive reflux disease at endoscopy (NERD) while 6 had erosive esophagitis (ERD). At histology, of the 6 patients with erosive esophagitis, 5 had mild esophagitis and 1 moderate esophagitis. No patients with NERD showed histological signs of esophagitis. After 3 mo of therapy, 13/15 patients (86.7%,P<0.01) showed a complete recovery of DIS and disappearance of heartburn. Of the 2 patients treated for 3 more months, complete recovery of DIS and heartburn were achieved in one. CONCLUSION: Three or 6 mo of omeprazole therapy led to a complete regression of the ultrastructural esophageal damage in 86.7% and in 93% of patients with DGER, NERD and ERD respectively. The ultrastructural recovery of the epithelium was accompanied by regression of heartburn in all cases.
基金Project(11572306)supported by the National Natural Science Foundation of China
文摘The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.
基金Under the auspices of National Basic Research Program of China (No. 2010CB833405)National Natural Science Foundation of China (No. 40772118, 49971009)
文摘The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
文摘In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.
文摘s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.
基金the National Natural Science Foundation of China(Grant No.91434121)Ministry of Science and Technology of China(Grant No.2013BAC12B01)+1 种基金State Key Laboratory of Multiphase complex systems(Grant No.MPCS-2015-A-03)Chinese Academy of Sciences(Grant No.XDA07080301)
文摘The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.
文摘AIM: To determine the prevalence and symptoms of gastroesophageal reflux disease (GERD) in a healthy general population in relation to demographic,lifestyle and health-seeking behaviors in Shiraz,southern Iran. METHODS: A total of 1978 subjects aged > 35 years who referred to Gastroenterohepatology Research Center and who completed a questionnaire consisting of 27 questions for GERD in relation to demographic,lifestyle and health-seeking behaviors were included in this study for a period of five months. The validity and reliability of the questionnaire were determined. RESULTS: The prevalence of GERD was 15.4%,which was higher in females (17.3%),in rural areas (19.8%),and in illiterate subjects (21.5%) and those with a mean age of 50.25 years. The prevalence was significantly lower in subjects having fried food (14.8%),and fruit and vegetables (14.6%). More symptoms were noticed in subjects consuming pickles (22.1%),taking aspirin (21%) and in subjects with psychological distresses (27.2%) and headaches (22%). The correlation was statistically significant between GERD and halitosis (18.3%),dyspepsia (30.6%),anxiety (19.5%),nightmares (23.9%) and restlessness (18.5%). Their health seeking behavior showed that there was a significant restriction of diet (20%),consumption of herbal medicine (19%),using over-the-counter drugs (29.9%) and consulting with physicians (24.8%). Presence of GERD symptoms was also significantly related to a previous family history of the disease (22.3%).CONCLUSION: GERD is more common in females,rural and illiterate subjects and correlated with consumption of pickles,occurrence of headache,psychological distress,dyspepsia,halitosis,anxiety,nightmare and restlessness,and a family history of GERD and aspirin intake,but the correlation was negative with consumption of fat and fiber intake.
文摘This article gives a numerical report to two dimensional(2D)Darcy-Forchheimer flow of carbon-water nanofluid.Flow is instigated by exponential extending curved surface.Viscous liquid in permeable space is described by Darcy-Forchheimer.The subsequent arrangement of partial differential equations is changed into ordinary differential framework through proper transformations.Numerical arrangements of governing frameworks are set up by NDSolve procedure.Outcomes of different sundry parameters on temperature and velocity are examined.Skin friction and heat transfer rate are also shown and inspected.