A broadband infrared surface sum frequency generation vibrational spectroscopy (SFG-VS) and an in situ UV excitation setup devoted to studying surface photocatalysis have been constructed. With a home-made compact h...A broadband infrared surface sum frequency generation vibrational spectroscopy (SFG-VS) and an in situ UV excitation setup devoted to studying surface photocatalysis have been constructed. With a home-made compact high vacuum cell, organic contaminants on TiO2 thin film surface prepared by RF magnetron sputtering were in situ removed under 266 nm irradiation in 10 kPa 02 atmosphere. We obtained the methanol spectrum in the CH3 stretching vibration region on TiO2 surface with changing the methanol pressure at room temperature. Features of both molecular and dissociative methanol, methoxy, adsorbed on this surface were resolved. The CH3 symmetric stretching vibration frequency and Fermi resonance of molecular methanol is red-shifted by about 6-8 cm-1 from low to high coverage. Moreover, the recombination of dissociative methanol and H on Surfaces in vacuum was also observed. Our results suggest two equilibria exist: between molecular methanol in the gas phase and that on surfaces, and between molecular methanol and dissociative methanol on surfaces.展开更多
A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of...A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of turbulent kinetic energy. We summarize and discuss methods for estimating the turbulent kinetic energy dissipation rate. Instrument body vibrations contaminate the shear signal in an ocean fi eld experiment, and a compensating correction successfully removes this contamination. In both tank test and ocean fi eld experiment, the dissipation rate measured with the MMR agreed well with that measured using other instruments.展开更多
Bridge-borne noise pollution caused by train-induced bridge vibration has attracted more and more attentions due to its low-frequency characteristic.In order to investigate the numerical simulation technique of bridge...Bridge-borne noise pollution caused by train-induced bridge vibration has attracted more and more attentions due to its low-frequency characteristic.In order to investigate the numerical simulation technique of bridge-borne noise and noise reduction methods,a simply supported prestressed concrete (PC) box-girder bridge is adopted for study.Based on train-track-bridge interaction theory,the dynamic response of the bridge under a moving high-speed train is calculated in time-domain and assumed as the sound source of bridge-borne noise.Then bridge-borne noise is estimated according to boundary element method (BEM) in frequency-domain.The time-frequency transform is conducted by fast Fourier transformation (FFT).The validity of the numerical simulation technique is verified through comparison with field measurement results.Furthermore,noise reduction methods are proposed and corresponding effects are discussed.Results show that the proposed numerical simulation method is feasible and accurate in assessing bridge-borne noise.The dominant frequencies of bridge vibration and bridgeborne noise range from 40 Hz to125 Hz and from 31.5 Hz to 100 Hz,respectively.The peak frequency of bridge-borne noise near the bottom plate is 63 Hz.Increasing the thickness of deck plate,adjusting the inclination of webs to 0°-12°,strengthening the boundary constraints and adding a longitudinal clapboard are very effective noise control measures.展开更多
基金This work was supported by the National Ba- sic Research Program of China (No.2013CB834600) and the National Natural Science Foundation of China (No.II27002/B030403, No.II290162/A040106, and No.21322310/B030402).
文摘A broadband infrared surface sum frequency generation vibrational spectroscopy (SFG-VS) and an in situ UV excitation setup devoted to studying surface photocatalysis have been constructed. With a home-made compact high vacuum cell, organic contaminants on TiO2 thin film surface prepared by RF magnetron sputtering were in situ removed under 266 nm irradiation in 10 kPa 02 atmosphere. We obtained the methanol spectrum in the CH3 stretching vibration region on TiO2 surface with changing the methanol pressure at room temperature. Features of both molecular and dissociative methanol, methoxy, adsorbed on this surface were resolved. The CH3 symmetric stretching vibration frequency and Fermi resonance of molecular methanol is red-shifted by about 6-8 cm-1 from low to high coverage. Moreover, the recombination of dissociative methanol and H on Surfaces in vacuum was also observed. Our results suggest two equilibria exist: between molecular methanol in the gas phase and that on surfaces, and between molecular methanol and dissociative methanol on surfaces.
基金Supported by the National Natural Science Foundation of China(Nos.41006005,40906004,91028008,40890153,41176008,41176010)the National High Technology Research and Development Program of China(863 Program)(No.2008AA09A402)the Program for New Century Excellent Talents in University(No.NCET-10-0764)
文摘A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of turbulent kinetic energy. We summarize and discuss methods for estimating the turbulent kinetic energy dissipation rate. Instrument body vibrations contaminate the shear signal in an ocean fi eld experiment, and a compensating correction successfully removes this contamination. In both tank test and ocean fi eld experiment, the dissipation rate measured with the MMR agreed well with that measured using other instruments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50678150,51008250)Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0701)+1 种基金the National High Technology Research and Development Program of China("863" Program) (Grant No. 2011AA11A103)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20110184110020)
文摘Bridge-borne noise pollution caused by train-induced bridge vibration has attracted more and more attentions due to its low-frequency characteristic.In order to investigate the numerical simulation technique of bridge-borne noise and noise reduction methods,a simply supported prestressed concrete (PC) box-girder bridge is adopted for study.Based on train-track-bridge interaction theory,the dynamic response of the bridge under a moving high-speed train is calculated in time-domain and assumed as the sound source of bridge-borne noise.Then bridge-borne noise is estimated according to boundary element method (BEM) in frequency-domain.The time-frequency transform is conducted by fast Fourier transformation (FFT).The validity of the numerical simulation technique is verified through comparison with field measurement results.Furthermore,noise reduction methods are proposed and corresponding effects are discussed.Results show that the proposed numerical simulation method is feasible and accurate in assessing bridge-borne noise.The dominant frequencies of bridge vibration and bridgeborne noise range from 40 Hz to125 Hz and from 31.5 Hz to 100 Hz,respectively.The peak frequency of bridge-borne noise near the bottom plate is 63 Hz.Increasing the thickness of deck plate,adjusting the inclination of webs to 0°-12°,strengthening the boundary constraints and adding a longitudinal clapboard are very effective noise control measures.