The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ...The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.展开更多
The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint det...The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.展开更多
This paper proposes a joint layer scheme for fair downlink data scheduling in muhiuser OFDM wireless networks. Based on the optimization model formulated as the maximization of total utility function with respect to t...This paper proposes a joint layer scheme for fair downlink data scheduling in muhiuser OFDM wireless networks. Based on the optimization model formulated as the maximization of total utility function with respect to the mean waiting time of user queue, we present an algorithm with low complexity for dynamic subcarrier allocation (DSA). The decision for subcarrier allocation was made according to delay utility function obtained by the algorithm that instantaneously estimated both channel condition and queue length using an exponentially weighted low-pass time window and pilot signals resPectively. The complexity of algorithm was reduced by varying the length of the time window to make use of time diversity, which provided higher throughput ratio. Simulation results demonstrate that compared with the conventional approach, the proposed scheme achieves better performance and can significantly improve fairness among users, with very limited delay performance degradation by using a decreasing concave utility function when the traffic load increases.展开更多
It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the mos...It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
基金Project(AWPT-M07)supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology
文摘The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.
文摘The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.
文摘This paper proposes a joint layer scheme for fair downlink data scheduling in muhiuser OFDM wireless networks. Based on the optimization model formulated as the maximization of total utility function with respect to the mean waiting time of user queue, we present an algorithm with low complexity for dynamic subcarrier allocation (DSA). The decision for subcarrier allocation was made according to delay utility function obtained by the algorithm that instantaneously estimated both channel condition and queue length using an exponentially weighted low-pass time window and pilot signals resPectively. The complexity of algorithm was reduced by varying the length of the time window to make use of time diversity, which provided higher throughput ratio. Simulation results demonstrate that compared with the conventional approach, the proposed scheme achieves better performance and can significantly improve fairness among users, with very limited delay performance degradation by using a decreasing concave utility function when the traffic load increases.
文摘It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.