Debris flows can be extremely destructive because they can increase in magnitude via progressive entrainment. In this paper, a total of 18landslide-type debris flows and 268 channelized debris flows in Wenchuan earthq...Debris flows can be extremely destructive because they can increase in magnitude via progressive entrainment. In this paper, a total of 18landslide-type debris flows and 268 channelized debris flows in Wenchuan earthquake and Taiwan region, as well as other regions were collected to analyze the entrainment rate of debris flows in each triggering condition. Results show that there is a power relationship between volume of initial triggered mass and final deposited debris for landslide type debris flow. The debris flows during2008 and 2013 in Wenchuan earthquake-region have smaller entrainment rate than that from 2001 t02009 in Taiwan. The entrainment rate of debris flow events from 2001 to 2009 in Taiwan shows a decaying tendency as elapsed time. Comparison of the entrainment rate in the two earthquake-hit regions with other regions proves that entrainment rate has a close relation with major sediment availability and secondary rainstorm conditions.展开更多
The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is ...The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.展开更多
A 2D vertical (2DV) numerical model, without o-coordinate transformation in the vertical direction, is developed for the simulation of flow and sediment transport in open channels. In the model, time-averaged Reynol...A 2D vertical (2DV) numerical model, without o-coordinate transformation in the vertical direction, is developed for the simulation of flow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-e nonlinear turbulence model. The modified Youngs- VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-e model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verification of the model using laboratory data shows that the model is able to adequately simulate flow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear flow scenarios.展开更多
基金funded by CRSRI Open Research Program (CKWV2013203/KY)Fundamental Research Funds for the Central Universities of China (Grant No. BLX2014-12)the National Natural Science Foundation (Grant No. 41601004)
文摘Debris flows can be extremely destructive because they can increase in magnitude via progressive entrainment. In this paper, a total of 18landslide-type debris flows and 268 channelized debris flows in Wenchuan earthquake and Taiwan region, as well as other regions were collected to analyze the entrainment rate of debris flows in each triggering condition. Results show that there is a power relationship between volume of initial triggered mass and final deposited debris for landslide type debris flow. The debris flows during2008 and 2013 in Wenchuan earthquake-region have smaller entrainment rate than that from 2001 t02009 in Taiwan. The entrainment rate of debris flow events from 2001 to 2009 in Taiwan shows a decaying tendency as elapsed time. Comparison of the entrainment rate in the two earthquake-hit regions with other regions proves that entrainment rate has a close relation with major sediment availability and secondary rainstorm conditions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60574001)Program for New Century Excellent Talents in University(Grant No.NCET-05-0485)
文摘The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.
基金Supported by the National Natural Science Foundation of China(Nos.51579036,51579030)the Fundamental Research Funds for the Central Universities of China(No.DUT14YQ108)
文摘A 2D vertical (2DV) numerical model, without o-coordinate transformation in the vertical direction, is developed for the simulation of flow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-e nonlinear turbulence model. The modified Youngs- VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-e model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verification of the model using laboratory data shows that the model is able to adequately simulate flow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear flow scenarios.