Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogde...In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine's experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine's scattering relation which consists of perturbation theory and Chapman-Harris's scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.展开更多
Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) ar...Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) are considered,namely,the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated.The Na-vacancy and Na^(+)distribution in NaMnO_(2) migrated along oxygen dumbbell hop(ODH)and tetrahedral site hop(TSH),and the migration energy barriers were 0.374 and 0.296 eV,respectively.In NaLi_(1/6)Mn_(5/6)O_(2),the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9%and the increase of the energy barrier by 53.8%.On the other hand,due to the alleviation of Jahn-Teller effect of neighboring Mn,the bonding strength of Mn-O was enhanced,so that the energy barrier of path 2-3 in Mn-L1 and Mn-L2 was the lowest,which was 0.234 and 0.424 eV,respectively.In Na_(1/6)Li_(1/6)Mn_(5/6)O_(2),the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV,respectively,because Li+migrates from the transition(TM)layer to the alkali metal(AM)layer with Na^(+)migration,which requires additional energy.展开更多
We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissip...We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissipation theories, in either the chronological ordering prescription or the correlated driving-dissipation form. Analytical results can be derived for the linear absorption of two-state systems. Assessments on their applicability are then made by comparison to the exact results.展开更多
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic...In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.展开更多
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free elect...Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.展开更多
Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourie...Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.展开更多
A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes....A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.展开更多
A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is const...A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.展开更多
A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ...A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.展开更多
Density functional theory calculations and ab initio molecular dynamics simulations are performed to study the feasibility of using borophene, a newly synthesized two-dimensional sheet of boron, as an anode material f...Density functional theory calculations and ab initio molecular dynamics simulations are performed to study the feasibility of using borophene, a newly synthesized two-dimensional sheet of boron, as an anode material for sodium-ion and sodium-oxygen batteries. The theo- retical capacity of borophene is found to be as high as 1,218 mAh g-1 (Nao.sB). More importantly, it is demonstrated that the sodium diffusion energy barrier along the valley direction is as low as 0.0019 eV, which corresponds to a diffusivity of more than a thousand times higher than that of conventional anode materials such as Na2Ti307 and Na3Sb. Hence, the use of borophene will revolutionize the rate capability of sodium-based batteries. Moreover, it is predicted that, during the sodiation process, the average open-circuit voltage is 0.53 V, which can effectively sup- press the formation of dendrites while maximizing the energy density. The metallic feature and structural integrity of borophene can be well preserved at different sodium concentrations, demonstrating good electronic conductivity and stable cyclability.展开更多
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).
文摘In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine's experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine's scattering relation which consists of perturbation theory and Chapman-Harris's scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.
基金Projects(51602352,51974373,51874358,51772333,61533020) supported by the National Natural Science Foundation of ChinaProject(2019JZZY020123) supported by the Major Scientific and Technological Innovation Projects of Shandong Province,China。
文摘Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries.In this work,two extreme concentrations of NaMnO_(2) and Na_(2/3)Li_(1/6)Mn_(5/6)O_(2) are considered,namely,the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated.The Na-vacancy and Na^(+)distribution in NaMnO_(2) migrated along oxygen dumbbell hop(ODH)and tetrahedral site hop(TSH),and the migration energy barriers were 0.374 and 0.296 eV,respectively.In NaLi_(1/6)Mn_(5/6)O_(2),the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9%and the increase of the energy barrier by 53.8%.On the other hand,due to the alleviation of Jahn-Teller effect of neighboring Mn,the bonding strength of Mn-O was enhanced,so that the energy barrier of path 2-3 in Mn-L1 and Mn-L2 was the lowest,which was 0.234 and 0.424 eV,respectively.In Na_(1/6)Li_(1/6)Mn_(5/6)O_(2),the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV,respectively,because Li+migrates from the transition(TM)layer to the alkali metal(AM)layer with Na^(+)migration,which requires additional energy.
文摘We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissipation theories, in either the chronological ordering prescription or the correlated driving-dissipation form. Analytical results can be derived for the linear absorption of two-state systems. Assessments on their applicability are then made by comparison to the exact results.
文摘In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
文摘Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.
基金Supported by National Natural Science Foundation of China under Grant No.10861008the "211 Project" Innovative Talents Training Program of Inner Mongolia University and Grant-in-Aid for Scientific Research from Inner Mongolia University of Technology under Grant No.ZS201032
文摘Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.
基金This research is supported by the National Natural Science Foundation of China(Grant No. 10301029, 10241003).
文摘A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.
基金the National Natural Science Foundation of China (Nos.40676016 and 40876010)the National Basic Research Program (973) of China (Nos.2003CB415101-03 and 2004CB418304)+2 种基金the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX2-YW-Q03-08)LASG State Key Laboratory Special FundE-Institutes of Shanghai Municipal Education Commission (No.E03004)
文摘A class of differential-difference reaction diffusion equations with a small time delay is considered.Under suitable conditions and by using the method of the stretched variable,the formal asymptotic solution is constructed.And then,by using the theory of differential inequalities the uniformly validity of solution is proved.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51506220 and 51356001)
文摘A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.
基金supported by a Grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(16213414)
文摘Density functional theory calculations and ab initio molecular dynamics simulations are performed to study the feasibility of using borophene, a newly synthesized two-dimensional sheet of boron, as an anode material for sodium-ion and sodium-oxygen batteries. The theo- retical capacity of borophene is found to be as high as 1,218 mAh g-1 (Nao.sB). More importantly, it is demonstrated that the sodium diffusion energy barrier along the valley direction is as low as 0.0019 eV, which corresponds to a diffusivity of more than a thousand times higher than that of conventional anode materials such as Na2Ti307 and Na3Sb. Hence, the use of borophene will revolutionize the rate capability of sodium-based batteries. Moreover, it is predicted that, during the sodiation process, the average open-circuit voltage is 0.53 V, which can effectively sup- press the formation of dendrites while maximizing the energy density. The metallic feature and structural integrity of borophene can be well preserved at different sodium concentrations, demonstrating good electronic conductivity and stable cyclability.