To solve the inaccuracy problem caused by the two existing methods (averageend-area method and prismoidal method) used for the calculation of roadway earthwork volume, thispaper puts forward a new concept of the 3-dim...To solve the inaccuracy problem caused by the two existing methods (averageend-area method and prismoidal method) used for the calculation of roadway earthwork volume, thispaper puts forward a new concept of the 3-dimensional algorithm that takes all the roadway geometricdesign procedures as a kind of geometrical operation between the ground model (original terrainmodel) and the roadway model (designed model) under certain constraints, and then presents acomplete 3-dimensional algorithm of roadway earthwork volume as well as its executable computerprogram. The algorithm benefits from the re-triangulation technique of constrained delaunaytriangulation (CDT), which can yield a true volume value theoretically. Through a number ofpractical testscovering varied intervals between adjacent cross sections, it is proven to possess ahigher accuracy compared with that of traditional methods. All the work involved in this paperindicates that the 3-dimensional calculation of roadway earthwork volumeis feasible, more accurateand should have further application in practice.展开更多
The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we ...The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.展开更多
Based on the framework of the geo-info spectra of montane altitudinal belts, this paper firstly reviews six classification systems for the spectra of mountain altitudinal belts in China and considers that detailed reg...Based on the framework of the geo-info spectra of montane altitudinal belts, this paper firstly reviews six classification systems for the spectra of mountain altitudinal belts in China and considers that detailed regional study of altitudinal belts is the key for reaching standardization and systemization of mountain altitudinal belts. Only can this further identify and resolve problems with the study of altitudinal belts. The factors forming the spectra of altitudinal belts are analyzed in the Tianshan Mountains of China, and a digital altitudinal belt system is constructed for the northern flank, southern flank, the heartland, and Ili valley in the west. The characteristics of each belt are revealed with a summarization of the pattern of areal differentiation of altitudinal belts.展开更多
Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution ...Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution of local surface topography.In this research,an area of 2.6 km 2 loess catchment in the Huachi County was selected as the study area locating in the Chinese Loess Plateau.The landslides inventory and landslide types were mapped using global position system(GPS) and field mapping.The landslide inventory shows that these shallow landslides involve different movement types including slide,creep and fall.Meanwhile,main topographic attributes were generated based on a high resolution digital terrain model(5 m × 5 m),including aspect,slope shape,elevation,slope angle and contributing area.These maps were overlaid with the spatial distributions of total landslides and each type of landslides in a geographic information system(GIS),respectively,to assess their spatial frequency distributions and relative failure potentials related to these selected topographic attributes.The spatial analysis results revealed that there is a close relation between the topographic attributes of the postlandsliding local surface and the types of landslide movement.Meanwhile,the types of landslide movement have some obvious differences in local topographic attributes,which can influence the relative failure potential of different types of landslides.These results have practical significance to mitigate natural hazard and understandgeomorphologic process in thick loess area.展开更多
Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is ...Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.展开更多
In that orcharding in early to mid twentieth century southeastern Australia involved use of certain heavy metal and As compounds in regular pest control spray procedures, some interest attaches to the possibility that...In that orcharding in early to mid twentieth century southeastern Australia involved use of certain heavy metal and As compounds in regular pest control spray procedures, some interest attaches to the possibility that these landparcels are underlain by soils with above background Cu, Pb and As levels. Interpretation of Land cover changes allowed land parcels previously occupied by orchards to be identified in the 1950s through time series air photos. A comparison of soil analysis results referring to soil samples from control sites, and from land parcels formerly occupied by orchardists, shows that contamination (above background) levels of cations in the pesticides can be found in the top 6 cm of former orchard soils. It is clear that digital spatial data handling and culturally informed air photo interpretation has a place in soil contamination studies, land use planning (with particular reference to re development) and in administration of public health.展开更多
A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tr...A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.展开更多
The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information,...The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms.展开更多
Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accur...Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks(ANNs) were developed to map soil units using digital elevation model(DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base(WRB)classification criteria than the Soil Taxonomy(ST) system, but more soil classes could be predicted when using ST(7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error(interpolation error) and validation error(extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data.展开更多
文摘To solve the inaccuracy problem caused by the two existing methods (averageend-area method and prismoidal method) used for the calculation of roadway earthwork volume, thispaper puts forward a new concept of the 3-dimensional algorithm that takes all the roadway geometricdesign procedures as a kind of geometrical operation between the ground model (original terrainmodel) and the roadway model (designed model) under certain constraints, and then presents acomplete 3-dimensional algorithm of roadway earthwork volume as well as its executable computerprogram. The algorithm benefits from the re-triangulation technique of constrained delaunaytriangulation (CDT), which can yield a true volume value theoretically. Through a number ofpractical testscovering varied intervals between adjacent cross sections, it is proven to possess ahigher accuracy compared with that of traditional methods. All the work involved in this paperindicates that the 3-dimensional calculation of roadway earthwork volumeis feasible, more accurateand should have further application in practice.
基金State Key Laboratory of Information Engineering in Surveying Mapping and Remote SensingNo.WKL((020)0302)
文摘The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.
文摘Based on the framework of the geo-info spectra of montane altitudinal belts, this paper firstly reviews six classification systems for the spectra of mountain altitudinal belts in China and considers that detailed regional study of altitudinal belts is the key for reaching standardization and systemization of mountain altitudinal belts. Only can this further identify and resolve problems with the study of altitudinal belts. The factors forming the spectra of altitudinal belts are analyzed in the Tianshan Mountains of China, and a digital altitudinal belt system is constructed for the northern flank, southern flank, the heartland, and Ili valley in the west. The characteristics of each belt are revealed with a summarization of the pattern of areal differentiation of altitudinal belts.
基金supported by the National Natural Science Foundation of China (Project No.41072213)the Opening Fund of Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University) (No. 201207)the Fundamental Research Funds for the Central Universities (No. lzujbky2011-7)
文摘Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution of local surface topography.In this research,an area of 2.6 km 2 loess catchment in the Huachi County was selected as the study area locating in the Chinese Loess Plateau.The landslides inventory and landslide types were mapped using global position system(GPS) and field mapping.The landslide inventory shows that these shallow landslides involve different movement types including slide,creep and fall.Meanwhile,main topographic attributes were generated based on a high resolution digital terrain model(5 m × 5 m),including aspect,slope shape,elevation,slope angle and contributing area.These maps were overlaid with the spatial distributions of total landslides and each type of landslides in a geographic information system(GIS),respectively,to assess their spatial frequency distributions and relative failure potentials related to these selected topographic attributes.The spatial analysis results revealed that there is a close relation between the topographic attributes of the postlandsliding local surface and the types of landslide movement.Meanwhile,the types of landslide movement have some obvious differences in local topographic attributes,which can influence the relative failure potential of different types of landslides.These results have practical significance to mitigate natural hazard and understandgeomorphologic process in thick loess area.
基金Supported by the International Foundation for Science,Stockholm,Sweden (No.C/3402-1)
文摘Information about the spatial distribution of soil attributes is indispensable for many land resource management applications; however, the ability of soil maps to supply such information for modern modeling tools is questionable. The objectives of this study were to investigate the possibility of predicting soil depth using some terrain attributes derived from digital elevation models (DEMs) with geographic information systems (GIS) and to suggest an approach to predict other soil attributes. Soil depth was determined at 652 field observations over the A1-Muwaqqar Watershed (70 km2) in Jordan. Terrain attributes derived from 30-m resolution DEMs were utilized to predict soil depth. The results indicated that the use of multiple linear regression models within small watershed subdivisions enabled the prediction of soil depth with a difference of 50 cm for 77% of the field observations. The spatial distribution of the predicted soil depth was visually coincided and had good correlations with the spatial distribution of the classes amalgamating three terrain attributes, slope steepness, slope shape, and compound topographic index. These suggested that the modeling of soil-landscape relationships within small watershed subdivisions using the three terrain attributes was a promising approach to predict other soil attributes.
文摘In that orcharding in early to mid twentieth century southeastern Australia involved use of certain heavy metal and As compounds in regular pest control spray procedures, some interest attaches to the possibility that these landparcels are underlain by soils with above background Cu, Pb and As levels. Interpretation of Land cover changes allowed land parcels previously occupied by orchards to be identified in the 1950s through time series air photos. A comparison of soil analysis results referring to soil samples from control sites, and from land parcels formerly occupied by orchardists, shows that contamination (above background) levels of cations in the pesticides can be found in the top 6 cm of former orchard soils. It is clear that digital spatial data handling and culturally informed air photo interpretation has a place in soil contamination studies, land use planning (with particular reference to re development) and in administration of public health.
基金Model System for Monitoring the Interactions Between Air-Sea-Land in Coastal Area and Predicting Disaster-Causing Weather by China Meteorological Administration
文摘A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40930531, 41171320)the National High Technology Research and Development Program of China (Grant No. 2011AA120303)Open Foundation of State Key Laboratory of Resources and Environmental Information System (Grant No. 2010KF0002SA)
文摘The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms.
文摘Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks(ANNs) were developed to map soil units using digital elevation model(DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base(WRB)classification criteria than the Soil Taxonomy(ST) system, but more soil classes could be predicted when using ST(7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error(interpolation error) and validation error(extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data.