期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
KDD活动的开展及其价值分析 被引量:6
1
作者 吴颖红 《现代图书情报技术》 CSSCI 北大核心 2004年第3期29-31,67,共4页
介绍了数据库知识发现(KDD)活动的展开要求,着重从它的技术处理流程来分析它的特性及其存在价值与意义。
关键词 KDD “数据库知识发现” 技术处理流程 价值分析 信息检索 数据挖掘 知识评价
下载PDF
DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases 被引量:15
2
作者 ZHOU Jiaogen GUAN Jihong LI Pingxiang 《Geo-Spatial Information Science》 2007年第2期137-144,共8页
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically... Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient. 展开更多
关键词 distributed clustering dual clustering distributed spatial database
下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
3
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部