This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional...This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.展开更多
Some theoretical problems of fractal geographical map data handling are dis- cussed and some new methods about fractal dimension introducing, developing, comparing and estimating are proposed in this paper.
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t...This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.展开更多
The curse of high-dimensionality has emerged in the statistical fields more and more frequently.Many techniques have been developed to address this challenge for classification problems. We propose a novel feature scr...The curse of high-dimensionality has emerged in the statistical fields more and more frequently.Many techniques have been developed to address this challenge for classification problems. We propose a novel feature screening procedure for dichotomous response data. This new method can be implemented as easily as t-test marginal screening approach, and the proposed procedure is free of any subexponential tail probability conditions and moment requirement and not restricted in a specific model structure. We prove that our method possesses the sure screening property and also illustrate the effect of screening by Monte Carlo simulation and apply it to a real data example.展开更多
文摘This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data.
文摘Some theoretical problems of fractal geographical map data handling are dis- cussed and some new methods about fractal dimension introducing, developing, comparing and estimating are proposed in this paper.
基金National Natural Science Foundation of China(No.61163010)
文摘This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.
基金supported by Graduate Innovation Foundation of Shanghai University of Finance and Economics of China (Grant Nos. CXJJ-2014-459 and CXJJ-2015-430)National Natural Science Foundation of China (Grant No. 71271128), the State Key Program of National Natural Science Foundation of China (Grant No. 71331006), the State Key Program in the Major Research Plan of National Natural Science Foundation of China (Grant No. 91546202)+1 种基金National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (Grant No. 2008DP173182)Innovative Research Team in Shanghai University of Finance and Economics (Grant No. IRT13077)
文摘The curse of high-dimensionality has emerged in the statistical fields more and more frequently.Many techniques have been developed to address this challenge for classification problems. We propose a novel feature screening procedure for dichotomous response data. This new method can be implemented as easily as t-test marginal screening approach, and the proposed procedure is free of any subexponential tail probability conditions and moment requirement and not restricted in a specific model structure. We prove that our method possesses the sure screening property and also illustrate the effect of screening by Monte Carlo simulation and apply it to a real data example.