Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,ar...Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.展开更多
Starting from a new discrete spectral problem, the corresponding hierarchy of nonlinear lattice equations is proposed. It is shown that the lattice soliton hierarchy possesses the bi-Hamiltonian structures and infinit...Starting from a new discrete spectral problem, the corresponding hierarchy of nonlinear lattice equations is proposed. It is shown that the lattice soliton hierarchy possesses the bi-Hamiltonian structures and infinitely many common commuting conserved functions. Further, infinite conservation laws of the hierarchy are presented.展开更多
This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-...This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.展开更多
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the ...In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.展开更多
It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,h...It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.展开更多
This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and th...This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and the constraint set in normed linear spaces. The constraint set is the set of weakly effcient solutions of vector equilibrium problem, and perturbed by the perturbation of the criterion mapping to the vector equilibrium problem.展开更多
This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Cou...This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Courant-Friedrichs in [8, p. 377]: A flow through a duct should be considered as a cal symmetry and should be determined steady, isentropic, irrotational flow with cylindriby solving the 3D potential flow equations with appropriate boundary conditions. By introducing some suitably weighted HSlder spaces and establishing a priori estimates, the authors prove the global existence and stability of a subsonic potential flow in a 3D nozzle when the state of subsonic flow at negative infinity is given.展开更多
In this paper, we address an open problem raised by Levy(2009) regarding the design of a binary minimax test without the symmetry assumption on the nominal conditional probability densities of observations. In the bin...In this paper, we address an open problem raised by Levy(2009) regarding the design of a binary minimax test without the symmetry assumption on the nominal conditional probability densities of observations. In the binary minimax test, the nominal likelihood ratio is a monotonically increasing function and the probability densities of the observations are located in neighborhoods characterized by placing a bound on the relative entropy between the actual and nominal densities. The general minimax testing problem at hand is an infinite-dimensional optimization problem, which is quite difficult to solve. In this paper, we prove that the complicated minimax testing problem can be substantially reduced to solve a nonlinear system of two equations having only two unknown variables, which provides an efficient numerical solution.展开更多
This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the ...This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the necessary and sufficient optimality conditions for a class of nonsmooth semi-infinite minmax programming problems, where set of restrictions are indexed in a compact set. Utilizing the sufficient optimality conditions, the authors formulate three types of dual models and establish weak and strong duality results. The results of the paper extend and unify naturally some earlier results from the literature.展开更多
基金NASI (National Academy of Sciences, India) for providing financial support
文摘Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
基金the State Key Basic Research Project of China under Grant No.2004CB318000National Natural Science Foundation of China under Grant No.10371023
文摘Starting from a new discrete spectral problem, the corresponding hierarchy of nonlinear lattice equations is proposed. It is shown that the lattice soliton hierarchy possesses the bi-Hamiltonian structures and infinitely many common commuting conserved functions. Further, infinite conservation laws of the hierarchy are presented.
文摘This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.
基金supported by National Natural Science Foundation of China(Grant No.11271221)
文摘In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.
基金sponsored by the National Natural Science Foundation of China (Grant No.10702071)the China Postdoctoral Science Foundation+1 种基金the Shanghai Postdoctoral Scientific Program (Grant No.10R21415800)the Shanghai Leading Academic Discipline Project (Grant No.B302)
文摘It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.
基金supported by the National Natural Science Foundation of China under Grant Nos.1106102311201216and 11471291
文摘This paper establishes some suffcient conditions for the lower semicontinuity of the effcient solution mapping for the semi-infinite vector optimization problem with perturbations of both the objective function and the constraint set in normed linear spaces. The constraint set is the set of weakly effcient solutions of vector equilibrium problem, and perturbed by the perturbation of the criterion mapping to the vector equilibrium problem.
基金supported by the National Basic Research Program of China (No.2006CB805902)the National Natural Science Foundation of China (No.10871096)the Research Foundation for Advanced Talents of Jiangsu University
文摘This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Courant-Friedrichs in [8, p. 377]: A flow through a duct should be considered as a cal symmetry and should be determined steady, isentropic, irrotational flow with cylindriby solving the 3D potential flow equations with appropriate boundary conditions. By introducing some suitably weighted HSlder spaces and establishing a priori estimates, the authors prove the global existence and stability of a subsonic potential flow in a 3D nozzle when the state of subsonic flow at negative infinity is given.
基金supported by National Natural Science Foundation of China(Grant Nos.61473197,61671411 and 61273074)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT 16R53)Program for Thousand Talents(Grant Nos.2082204194120 and 0082204151008)
文摘In this paper, we address an open problem raised by Levy(2009) regarding the design of a binary minimax test without the symmetry assumption on the nominal conditional probability densities of observations. In the binary minimax test, the nominal likelihood ratio is a monotonically increasing function and the probability densities of the observations are located in neighborhoods characterized by placing a bound on the relative entropy between the actual and nominal densities. The general minimax testing problem at hand is an infinite-dimensional optimization problem, which is quite difficult to solve. In this paper, we prove that the complicated minimax testing problem can be substantially reduced to solve a nonlinear system of two equations having only two unknown variables, which provides an efficient numerical solution.
基金supported by the National Board of Higher Mathematics(NBHM)Department of Atomic Energy,India,under Grant No.2/40(12)/2014/R&D-II/10054
文摘This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the necessary and sufficient optimality conditions for a class of nonsmooth semi-infinite minmax programming problems, where set of restrictions are indexed in a compact set. Utilizing the sufficient optimality conditions, the authors formulate three types of dual models and establish weak and strong duality results. The results of the paper extend and unify naturally some earlier results from the literature.