A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mix...A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.展开更多
The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate na...The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate nanometer silicon MOS field-effect transistors. Two electron and two hole surface channels are simultaneously present in all channel current ranges. Output and transfer characteristics are computed over practical base and gate oxide thicknesses. The bipolar theory corroborates well with experimental data reported recently for FinFETs with metal/silicon and p/n junction source/drain contacts. Single-device realization of CMOS inverter and SRAM memory circuit functions are recognized.展开更多
This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole em...This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.展开更多
This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper whic...This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper which represented the drift and diffusion current by the single electrochemical (potential-gradient) current, the two-dimensional transistor is partitioned into two sections, the source and drain sections, each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is then obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and the drift and diffusion components of the electron-channel and hole-channel currents and output and transfer conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the two-section short-channel theory from the one-section long-channel theory are described.展开更多
This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obt...This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.展开更多
Nowadays, the study of myths is rather neglected as a field of research in sociology. There is a void that this paper would like to contribute to filling. It outlines a theoretical and empirical sociological approach ...Nowadays, the study of myths is rather neglected as a field of research in sociology. There is a void that this paper would like to contribute to filling. It outlines a theoretical and empirical sociological approach to social myths as a major component of collective imaginaries and a universal sociological mechanism through time and space. The article recalls the major functions performed by myths in every society (modem as well as "primitive"), introduces new concepts, and sets forth an analytical framework designed to account for the emergence, the reproduction, and the decline of myths, as sacralised collective representations.展开更多
This research explores media users' cognition of "time" and "space" across different media platforms, and conducts a comparison among media genres including mass media and intemet media based on user's interacti...This research explores media users' cognition of "time" and "space" across different media platforms, and conducts a comparison among media genres including mass media and intemet media based on user's interactivities. Especially, this research focused on the internet's space and time perception based on communication genres such as e-mail, Blogs, portals, news-media, e-commerce, and social media (SNS). The research adopted two theories (construal level theory of time and space). The time related theory is "temporal distance theory". The space related theory is "media space". The research is designed to measure user's perception of interactivity, time-construal level and its media space cognition while using the media. There are two independent variables: Interactivities (contents, user, and media levels) and user involvement (CMC-user vs. user, HCI-user vs. media); there are two dependent variables: Cognition of spatial and temporal levels. This research also seeks the associated variables relationship among those variables through the structural equation model (SEM). The 307 data was collected and analyzed to test the research question. The results show that the dimension of the media side's interactivity affected media's usage time and space perception. There are 2 ~ 2 factors variables to affect time and space. One is human and media interaction (HC1) and human to human communication (CMC); the other is traditional mass media (one-way communication) and interuet media (two-ways communication). The results prove the user's perception for media time and space is based on the levels of interactivity. The levels of interactivities depend on media usage: one-one, one-many, synchronous, asynchronous, interpersonal, and social network communication. Online media provides greater social space; while traditional media tends toward para-space perception. On the other hand, the users' time cognitions between online media are different such as fixed time versus cyber-time.展开更多
Stereo-electroencephalography (SEEG) is the main investigation method for pre-surgical evaluation of patients suffering from drug-resistant partial epilepsy. SEEG signals reflect two types of paroxysmal activity: i...Stereo-electroencephalography (SEEG) is the main investigation method for pre-surgical evaluation of patients suffering from drug-resistant partial epilepsy. SEEG signals reflect two types of paroxysmal activity: ictal activity and interictal activity or interictal spikes (IS). The relationship between IS and ictal activity is an essential and recurrent question in epiletology. In this paper, we present a distributed and parallel architecture for space and temporal distribution analysis of IS, based on a distributed and collaborative methodology. The proposed approach exploits the SEEG data using vector analysis of the corresponding signals among multi-agents system. The objective is to present a new method to analyze and classify IS during wakefulness (W), light sleep (LS) and deep sleep (DS) stages. Temporal and spatial relationships between IS and seizure onset zone are compared during wakefulness, light sleep and deep sleep. Results show that space and temporal distribution for real data are not random but correlated.展开更多
Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and l...Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.展开更多
文摘A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.
文摘The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate nanometer silicon MOS field-effect transistors. Two electron and two hole surface channels are simultaneously present in all channel current ranges. Output and transfer characteristics are computed over practical base and gate oxide thicknesses. The bipolar theory corroborates well with experimental data reported recently for FinFETs with metal/silicon and p/n junction source/drain contacts. Single-device realization of CMOS inverter and SRAM memory circuit functions are recognized.
文摘This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.
文摘This paper gives the short channel analytical theory of the bipolar field-effect transistor (BiFET) with the drift and diffusion currents separately computed in the analytical theory. As in the last-month paper which represented the drift and diffusion current by the single electrochemical (potential-gradient) current, the two-dimensional transistor is partitioned into two sections, the source and drain sections, each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is then obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and the drift and diffusion components of the electron-channel and hole-channel currents and output and transfer conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the two-section short-channel theory from the one-section long-channel theory are described.
文摘This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.
文摘Nowadays, the study of myths is rather neglected as a field of research in sociology. There is a void that this paper would like to contribute to filling. It outlines a theoretical and empirical sociological approach to social myths as a major component of collective imaginaries and a universal sociological mechanism through time and space. The article recalls the major functions performed by myths in every society (modem as well as "primitive"), introduces new concepts, and sets forth an analytical framework designed to account for the emergence, the reproduction, and the decline of myths, as sacralised collective representations.
文摘This research explores media users' cognition of "time" and "space" across different media platforms, and conducts a comparison among media genres including mass media and intemet media based on user's interactivities. Especially, this research focused on the internet's space and time perception based on communication genres such as e-mail, Blogs, portals, news-media, e-commerce, and social media (SNS). The research adopted two theories (construal level theory of time and space). The time related theory is "temporal distance theory". The space related theory is "media space". The research is designed to measure user's perception of interactivity, time-construal level and its media space cognition while using the media. There are two independent variables: Interactivities (contents, user, and media levels) and user involvement (CMC-user vs. user, HCI-user vs. media); there are two dependent variables: Cognition of spatial and temporal levels. This research also seeks the associated variables relationship among those variables through the structural equation model (SEM). The 307 data was collected and analyzed to test the research question. The results show that the dimension of the media side's interactivity affected media's usage time and space perception. There are 2 ~ 2 factors variables to affect time and space. One is human and media interaction (HC1) and human to human communication (CMC); the other is traditional mass media (one-way communication) and interuet media (two-ways communication). The results prove the user's perception for media time and space is based on the levels of interactivity. The levels of interactivities depend on media usage: one-one, one-many, synchronous, asynchronous, interpersonal, and social network communication. Online media provides greater social space; while traditional media tends toward para-space perception. On the other hand, the users' time cognitions between online media are different such as fixed time versus cyber-time.
文摘Stereo-electroencephalography (SEEG) is the main investigation method for pre-surgical evaluation of patients suffering from drug-resistant partial epilepsy. SEEG signals reflect two types of paroxysmal activity: ictal activity and interictal activity or interictal spikes (IS). The relationship between IS and ictal activity is an essential and recurrent question in epiletology. In this paper, we present a distributed and parallel architecture for space and temporal distribution analysis of IS, based on a distributed and collaborative methodology. The proposed approach exploits the SEEG data using vector analysis of the corresponding signals among multi-agents system. The objective is to present a new method to analyze and classify IS during wakefulness (W), light sleep (LS) and deep sleep (DS) stages. Temporal and spatial relationships between IS and seizure onset zone are compared during wakefulness, light sleep and deep sleep. Results show that space and temporal distribution for real data are not random but correlated.
文摘Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.