在目标-攻击弹-防御弹群(target-attacker-defenders,TADs)系统中,防御弹群通过与目标(载机)异构协同、弹群间同构协同以保护载机并降低单弹脱靶的风险。针对TADs系统在二维平面下的协同主动防御模型进行了研究,采用机/弹协同和防御弹...在目标-攻击弹-防御弹群(target-attacker-defenders,TADs)系统中,防御弹群通过与目标(载机)异构协同、弹群间同构协同以保护载机并降低单弹脱靶的风险。针对TADs系统在二维平面下的协同主动防御模型进行了研究,采用机/弹协同和防御弹群协同的两层制导策略。在机弹协同方面,防御弹领弹与载机进行异构协同,考虑载机及防御弹领弹的机动能力限制,采用协同视线制导律(cooperative line of sight guidance,CLOSG)分别得到载机和防御弹领弹的制导指令;在防御弹群协同方面,考虑单弹计算能力约束,拦截时间约束和加速度约束,设计出基于分布式模型预测控制(distributed model predictive control,DMPC)的算法实现弹群从弹和防御弹领弹协同同时抵达并拦截攻击弹。仿真结果表明,多防御弹协同一致拦截制导算法能够实现TADs系统中载机和防御弹群的异构协同主动防御,并实现防御弹群的一致性同时拦截,以降低单弹脱靶的风险。展开更多
文摘在目标-攻击弹-防御弹群(target-attacker-defenders,TADs)系统中,防御弹群通过与目标(载机)异构协同、弹群间同构协同以保护载机并降低单弹脱靶的风险。针对TADs系统在二维平面下的协同主动防御模型进行了研究,采用机/弹协同和防御弹群协同的两层制导策略。在机弹协同方面,防御弹领弹与载机进行异构协同,考虑载机及防御弹领弹的机动能力限制,采用协同视线制导律(cooperative line of sight guidance,CLOSG)分别得到载机和防御弹领弹的制导指令;在防御弹群协同方面,考虑单弹计算能力约束,拦截时间约束和加速度约束,设计出基于分布式模型预测控制(distributed model predictive control,DMPC)的算法实现弹群从弹和防御弹领弹协同同时抵达并拦截攻击弹。仿真结果表明,多防御弹协同一致拦截制导算法能够实现TADs系统中载机和防御弹群的异构协同主动防御,并实现防御弹群的一致性同时拦截,以降低单弹脱靶的风险。