The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including sat...The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.展开更多
To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based...To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based on the joint measurement of target radiated noise's amplitude and frequency was presented. First, the error-free theoretical equations for target characteristic frequency, absolute velocity, the CPA, and amplitude of the radiation noise were derived by three equal interval measured values of the target amplitude and frequency. Then, the method to improve the calculation accuracy was given. Finally, the simulation and experiments were conducted in the air and showed the correctness of this method. By using one single piece of LOFAR, this method can calculate four target parameters and the relative error of each estimated parameter is less than 10%.展开更多
基金The work was supported by the National Natural Science Foundation of China(No.11571171)。
文摘The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 51209173)
文摘To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based on the joint measurement of target radiated noise's amplitude and frequency was presented. First, the error-free theoretical equations for target characteristic frequency, absolute velocity, the CPA, and amplitude of the radiation noise were derived by three equal interval measured values of the target amplitude and frequency. Then, the method to improve the calculation accuracy was given. Finally, the simulation and experiments were conducted in the air and showed the correctness of this method. By using one single piece of LOFAR, this method can calculate four target parameters and the relative error of each estimated parameter is less than 10%.