A new technology of knotless barbed surgical sutures has made its mark in cosmetic surgery around the world. Although this technology is still under development, it has been approved by the Federal Drug Administration...A new technology of knotless barbed surgical sutures has made its mark in cosmetic surgery around the world. Although this technology is still under development, it has been approved by the Federal Drug Administration in USA, and is now used for facelift and eyelid ptosis procedures. The objectives of this study were to review the different types of knotless sutures, assess the tissue holding capacity of barbed sutures and perform image analysis to better understand the mechanism of energy absorption by the barbs under loading by the forces of surrounding tissues. A two dimensional finite element analysis was also performed to identify the areas of stress concentration, which are the main precursors for the peeling of the barbs beyond the maximun tissue holding force for a particular polymer. It was found that barbed sutures exhibit tissue holding capacities comparable to that of knotted sutures. This technology needs to be investigated further so as to optimize the barb geometry for superior holding capacity in a variety of different tissues.展开更多
A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurati...A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,展开更多
In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cycl...In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.展开更多
A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady s...A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.展开更多
A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments an...A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.展开更多
The triangular linear finite elements on piecewise uniform grid for an elliptic problem in convex polygonal domain are discussed. Global superconvergence in discrete Hi-norm and global extrapolation in discrete L2-nor...The triangular linear finite elements on piecewise uniform grid for an elliptic problem in convex polygonal domain are discussed. Global superconvergence in discrete Hi-norm and global extrapolation in discrete L2-norm are proved. Based on these global estimates the conjugate gradient method (CG) is effective, which is applied to extrapolation cascadic multigrid method (EXCMG). The numerical experiments show that EXCMG is of the global higher accuracy for both function and gradient.展开更多
基金College of Textiles,North Carolina State University,USA
文摘A new technology of knotless barbed surgical sutures has made its mark in cosmetic surgery around the world. Although this technology is still under development, it has been approved by the Federal Drug Administration in USA, and is now used for facelift and eyelid ptosis procedures. The objectives of this study were to review the different types of knotless sutures, assess the tissue holding capacity of barbed sutures and perform image analysis to better understand the mechanism of energy absorption by the barbs under loading by the forces of surrounding tissues. A two dimensional finite element analysis was also performed to identify the areas of stress concentration, which are the main precursors for the peeling of the barbs beyond the maximun tissue holding force for a particular polymer. It was found that barbed sutures exhibit tissue holding capacities comparable to that of knotted sutures. This technology needs to be investigated further so as to optimize the barb geometry for superior holding capacity in a variety of different tissues.
文摘A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,
文摘In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.
文摘A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.
基金supported by the National Natural Science Foundation of China(11302154,11272273)China Postdoctoral Science Foundation(2013M530211)+1 种基金Opening Project of Shanghai Key Laboratory of Orthopaedic Implants(KFKT2013002)Fundamental Research Funds for the Central Universities
文摘A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.
基金supported by National Natural Science Foundation of China(Grant Nos.1130117611071067 and 11226332)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162120036)the Construct Program of the Key Discipline in Hunan Province
文摘The triangular linear finite elements on piecewise uniform grid for an elliptic problem in convex polygonal domain are discussed. Global superconvergence in discrete Hi-norm and global extrapolation in discrete L2-norm are proved. Based on these global estimates the conjugate gradient method (CG) is effective, which is applied to extrapolation cascadic multigrid method (EXCMG). The numerical experiments show that EXCMG is of the global higher accuracy for both function and gradient.