A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically...The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.展开更多
Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this sh...Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this shortcoming,an approach to describing the pre-trip route choice behavior with the incorporation of the real-time and historical information is proposed.Two types of real-time information are investigated,which are quantitative information and prescriptive information.By using the bounded rationality theory,the influence of historical information on the real-time information reference process is examined first.Estimation results show that the historical information has a significant influence on the quantitative information reference process,but not on the prescriptive information reference process.Then the route choice behavior is modeled.A comparison is also made among three route choice models,one of which does not incorporate the real-time information reference process,while the others do.Estimation results show that the route choice behavior is better described with the consideration of the reference process of both quantitative and prescriptive information.展开更多
Aim To analyze the transient speciality of nonlinear, anisotropic, AC+DC coupling electric field, and to compare the withstand voltage strength of different insulation structures. Methods The transient process o...Aim To analyze the transient speciality of nonlinear, anisotropic, AC+DC coupling electric field, and to compare the withstand voltage strength of different insulation structures. Methods The transient process of polarity reversal is analyzed, considering the anisotropic property of oil immersed press board, a new finite element model based on Galerkin method is presented and verified. The model developed is applied to calculate the electric field distribution in four typical winding end structures of the converter transformer. Results\ The whole ring structure possesses the best insulation characteristics. Conclusion\ By introducing reasonable insulation components, insulation strength with the same surrounding sizes can be improved more than 30%.展开更多
The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model...The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model was generated and a crystal plasticity-based finite element model was developed for each grain and the specimen as a whole.The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function(ODF).The deformation behaviors,including inhomogeneous material flow,decrease of contact press and roll force with the increase of grain size for the constant size of specimens,were studied.It is revealed that when the specimens are composed of only a few grains across thickness,the grains with different sizes,shapes and orientations are unevenly distributed in the specimen and each grain plays a significant role in micro-scale plastic deformation and leads to inhomogeneous deformation and the scatter of experimental and simulation results.The slip system activity was examined and the predicted results are consistent with the surface layer model.The slip band is strictly influenced by the misorientation of neighbor grain with consideration of slip system activity.Furthermore,it is found that the decrease of roll force and the most active of slip system in surface grains are caused by the increase of free surface grain effect when the grain size is increased.The results of the physical experiment and simulation provide a basic understanding of micro-scaled plastic deformation behavior in asymmetric foil rolling.展开更多
The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element model...The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.展开更多
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ...The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.展开更多
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t...To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams.展开更多
In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the sof...In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.展开更多
A new three-dimensional laterolog array sonde(3D-LS) is presented. The 3DLS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferentia...A new three-dimensional laterolog array sonde(3D-LS) is presented. The 3DLS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferential detection abilities. Six investigation modes are designed using the 3D finite-element method and different investigation depths are simulated based on the pseudo-geometrical factor of the six modes. The invasion profile is described using multi-array radial logs. From the analysis of the pseudo-geometrical factor, the investigation depth of the 3D-LS is about 1.5 m for conductive invasion, which is close to that of the dual laterolog tool but greater than that of the highly integrated azimuthal laterolog sonde. The vertical and azimuthal resolution is also analyzed with the same method. The 3DLS can detect low-resistivity anomalies of 0.5 m thickness and 15? around the borehole for infinitely thick formations. This study lays the foundation for more work on 3D laterolog array sonde for evaluating low-resistivity anomalies.展开更多
Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The corr...Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.展开更多
Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite elem...Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite element method (FEM). The re-meshing method is used when the severe element distortion occurs to facilitate further computation and avoid divergence. The McClintock fracture criterion is adopted to predict and determine the time and site of crack initiation and propagation. Based on this numerical model, the distribution and developing trend of the stress and strain in the shearing zone are predicted. Furthermore, the influence of several process parameters, such as punch-die clearance, edge radius of punch and die, V-ring force, counter force, etc., on the blanked quality is analyzed. The discipline is in accordance with the actual manufacture situation, which can be a guidance to optimization of process parameters.展开更多
Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh...Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.展开更多
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金the financial supports from the National Natural Science Foundation of China(Nos.52075423,U2141214).
文摘The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.
基金The Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CX10B_071Z)the National High Technology Research and Development Program of China(863 Program)(No.2011AA110304)
文摘Research about the auto commuter's pre-trip route choice behavior ignores the combined influence of the real-time information and all respondents' historical information in the existing documents.To overcome this shortcoming,an approach to describing the pre-trip route choice behavior with the incorporation of the real-time and historical information is proposed.Two types of real-time information are investigated,which are quantitative information and prescriptive information.By using the bounded rationality theory,the influence of historical information on the real-time information reference process is examined first.Estimation results show that the historical information has a significant influence on the quantitative information reference process,but not on the prescriptive information reference process.Then the route choice behavior is modeled.A comparison is also made among three route choice models,one of which does not incorporate the real-time information reference process,while the others do.Estimation results show that the route choice behavior is better described with the consideration of the reference process of both quantitative and prescriptive information.
文摘Aim To analyze the transient speciality of nonlinear, anisotropic, AC+DC coupling electric field, and to compare the withstand voltage strength of different insulation structures. Methods The transient process of polarity reversal is analyzed, considering the anisotropic property of oil immersed press board, a new finite element model based on Galerkin method is presented and verified. The model developed is applied to calculate the electric field distribution in four typical winding end structures of the converter transformer. Results\ The whole ring structure possesses the best insulation characteristics. Conclusion\ By introducing reasonable insulation components, insulation strength with the same surrounding sizes can be improved more than 30%.
基金Project(51374069)supported by the National Natural Science Foundation of ChinaProject(U1460107)supported by the Joint Fund of the National Natural Science Foundation of China
文摘The grain statistics effect was investigated through asymmetric rolling of pure copper foil by a realistic polycrystalline aggregates model and crystal plasticity element finite model.A polycrystalline aggregate model was generated and a crystal plasticity-based finite element model was developed for each grain and the specimen as a whole.The crystal plasticity model itself is rate dependent and accounts for local dissipative hardening effects and the original orientation of each grain was generated based on the orientation distribution function(ODF).The deformation behaviors,including inhomogeneous material flow,decrease of contact press and roll force with the increase of grain size for the constant size of specimens,were studied.It is revealed that when the specimens are composed of only a few grains across thickness,the grains with different sizes,shapes and orientations are unevenly distributed in the specimen and each grain plays a significant role in micro-scale plastic deformation and leads to inhomogeneous deformation and the scatter of experimental and simulation results.The slip system activity was examined and the predicted results are consistent with the surface layer model.The slip band is strictly influenced by the misorientation of neighbor grain with consideration of slip system activity.Furthermore,it is found that the decrease of roll force and the most active of slip system in surface grains are caused by the increase of free surface grain effect when the grain size is increased.The results of the physical experiment and simulation provide a basic understanding of micro-scaled plastic deformation behavior in asymmetric foil rolling.
基金Project(30770576) supported by the National Natural Science Foundation of ChinaProject(2007AA03Z114) supported by Hi-tech Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,China
文摘The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.
文摘The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.
基金The National Natural Science Foundation of China(No.51278118)the National Basic Research Program of China(973Program)(No.2009CB623200)the Natural Science Foundation of Jiangsu Province(No.BK2012756)
文摘To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams.
文摘In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.
基金sponsored by the National Oil and Gas Major Projects(No.2011ZX05020-009)
文摘A new three-dimensional laterolog array sonde(3D-LS) is presented. The 3DLS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferential detection abilities. Six investigation modes are designed using the 3D finite-element method and different investigation depths are simulated based on the pseudo-geometrical factor of the six modes. The invasion profile is described using multi-array radial logs. From the analysis of the pseudo-geometrical factor, the investigation depth of the 3D-LS is about 1.5 m for conductive invasion, which is close to that of the dual laterolog tool but greater than that of the highly integrated azimuthal laterolog sonde. The vertical and azimuthal resolution is also analyzed with the same method. The 3DLS can detect low-resistivity anomalies of 0.5 m thickness and 15? around the borehole for infinitely thick formations. This study lays the foundation for more work on 3D laterolog array sonde for evaluating low-resistivity anomalies.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (No.6821001005)
文摘Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.
基金The National Natural Science Foundation of China(No50505027)
文摘Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite element method (FEM). The re-meshing method is used when the severe element distortion occurs to facilitate further computation and avoid divergence. The McClintock fracture criterion is adopted to predict and determine the time and site of crack initiation and propagation. Based on this numerical model, the distribution and developing trend of the stress and strain in the shearing zone are predicted. Furthermore, the influence of several process parameters, such as punch-die clearance, edge radius of punch and die, V-ring force, counter force, etc., on the blanked quality is analyzed. The discipline is in accordance with the actual manufacture situation, which can be a guidance to optimization of process parameters.
文摘Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.