The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of ...Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.展开更多
Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output s...Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the mode...A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.展开更多
To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Ba...To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Based on the inverse kinematic analysis, the H∞ norm of the weighted Jacobian matrix was adopted as the performance index to minimize the articular velocities, and then the optimal design problem was formulated to find a manipulator geometry that minimized the global performance index with the constraints of the workspace and structural parameters limits. Since the optimal design problem is a constrained nonlinear optimization problem without explicit analytical expressions, the genetic algorithm was applied to numerically solve the problem. Simulation results indicate that the articular velocities of the optimal manipulators can be the minimum while the kinematic reauirements of the moving platform are satisfied.展开更多
This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model error...This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances.展开更多
An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H...An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Laser-assisted machining has been considered as a new alternative machining method of difficult-to-cut materials. A laser module with one-axis manipulator is developed to focus on preheating laser beam effectively. Fi...Laser-assisted machining has been considered as a new alternative machining method of difficult-to-cut materials. A laser module with one-axis manipulator is developed to focus on preheating laser beam effectively. First of all, the thermal characteristic analysis was performed to verify the importance of laser module location. Laser module should be moved within 1 mm. Analysis conditions of three positions in driving range of the one-axis manipulator are selected. And a C coupling is used as a connection device for spindle and laser module. An initial model has one C coupling, and the number of C coupling has been increased from 1 to 2 in an improved model. And the analysis is carried out again for the one-axis manipulator. The results of the static analysis, the maximum displacement and the maximum stress are decreased by 22% and 11%, respectively, for the improved model when the laser module is located at farthest away from the spindle unit. As a result of the modal analysis, the first natural frequency mode is increased by 13%, 18% and 12% at these positions of the improved model, respectively. The harmonic analysis of the improved model was performed by analyzing the results of the modal analysis. The maximum deformation was 0.33 mm in driving unit at 222 Hz. And the maximum compliance of the ISO axis direction was 0.23 mm/N. Finally, the one-axis manipulator has been fabricated successfully using the analysis result.展开更多
The special fingers of the gripper on the space robot have been developed based on genetic algorithmfor the space application.Therefore,the symmetrical wedgelike finger composed of the 4-1ink mechanismand the relevant...The special fingers of the gripper on the space robot have been developed based on genetic algorithmfor the space application.Therefore,the symmetrical wedgelike finger composed of the 4-1ink mechanismand the relevant track were designed.To decrease the weight and optimize the kinematics and grip force,the compositive fitness function for dynamics and kinematics was created.The calculation efficiency couldbe improved by novel methods which overcame the problem of too many constraints in the solution space,such as introducing the specialist's experience and punishment function and simplifying the variables.The solutions show that the optimized finger could perform well and the methods were effectual.展开更多
Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been bui...Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.展开更多
Acceleration reflects vibration of a robot,and the vibration signal can reflect the operation state of the robot. Generally,detection of robot mechanical arm failure requires installing sensors on each joint. This stu...Acceleration reflects vibration of a robot,and the vibration signal can reflect the operation state of the robot. Generally,detection of robot mechanical arm failure requires installing sensors on each joint. This study proposes a method to diagnose the fault by single acceleration sensor only,which is installed at the end of the robot. The operation state of the robot is evaluated by analyzing vibration characteristics of its acceleration. First,a data acquisition function of a programmable multi-axis controller is applied to extract practical motion signals of the robot joints during operation,and practical motion signals are analyzed. Second,synthetic methods to determine acceleration of the end joints of SCARA robots in a Cartesian space is used based on the theory of the Jacobian matrix and the frequency domain of final acceleration is investigated. The relationship between end-and joint-vibration frequencies under given speeds is determined. Then,the method is verified by comparing characteristic frequencies of joint acceleration and synthetic acceleration in Cartesian coordinate system at different speeds. Finally,some faults can be diagnosed by comparing the acceleration vibration frequency extracted by a single acceleration sensor installed at the end of robot with the normal running state. Thus,this method can be used to monitor the signal variation of each joint without installing sensors on each robot joint.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ...In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.展开更多
The singular points of a 6-SPS Stewart platform are distributed on the multi-dimensional singularity hypersurface in the task-space, which divides the workspace of the manipulator into several singularity-free regions...The singular points of a 6-SPS Stewart platform are distributed on the multi-dimensional singularity hypersurface in the task-space, which divides the workspace of the manipulator into several singularity-free regions. Because of the motion un- certainty at singular points, while the manipulator traverses this kind of hypersurface from one singularity-free region to another, its motion cannot be predetermined. In this paper, a detailed approach for the manipulator to traverse the singularity hypersurface with its non-persistent configuration is presented. First, the singular point transfer disturbance and the pose disturbance, which make the perturbed singular point transfer horizontally and vertically, respectively, are constructed. Through applying these disturbances into the input parameters within the maximum loss control domain, the perturbed persistent configuration is transformed into its corresponding non-persistent one. Under the action of the disturbances, the manipulator can traverse the singularity hypersurface from one singularity-flee region to another with a desired configuration.展开更多
The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balan...The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balancing its model weight and multi-parametric distributions to the required accuracy. A novel measuring instrument of space manipulator is designed to orbital simulative motion and locational accuracy test. The camera system of space manipulator, calibrated by MOGA algorithm, is used to locational accuracy test in this measuring instrument. The experimental result shows that the absolute errors are [0.07, 1.75] mm for MOGA calibrating model, [2.88, 5.95] mm for MN method, and [1.19, 4.83] mm for LM method. Besides, the composite errors both of LM method and MN method are approximately seven times higher that of MOGA calibrating model. It is suggested that the MOGA calibrating model is superior both to LM method and MN method.展开更多
Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free po...Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free poses. A well connected roadmap can be obtained and stored in the 6 dimension task space for a specific 6 DOF parallel manipulator in this way and a singularity-free path is queried to connect the start pose and the goal pose. So the singularity-free path planning between any two given poses for this parallel manipulator can be performed very efficiently. This singularity-free path planning method can be used with any type of parallel manipulator only if the matrix used can be given to define singularities.展开更多
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
文摘Based on an analysis of the relative shaft-to-hole position and attiude errors, as well as of the mechanics and Kinematics in the process of automatic assembly of industrial robots, the paper studies the principle of construction of dynamic wrists. Type I-3 and Ⅱ-6 dynamic compliant wrists have been designed and made. Prblems in the production of compliant elements and the connection between compliant elements and wrists were also solved. A study on the results of tests of the function of two kinds of dynamic compliant wrists shows that the dynamic compliant wrist's compliancy function can be improved by adding metallic materials having higher longitudinal and transverse rigidity into the softer elstomer. And the design Principle is proved to be feasible and practicable. It can be expected that the use of dynamic compliant wrist will greatly lower the technical requirements of the shaft-hole assembly and the requirements in the resetting accuracy.
文摘Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
文摘A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.
文摘To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Based on the inverse kinematic analysis, the H∞ norm of the weighted Jacobian matrix was adopted as the performance index to minimize the articular velocities, and then the optimal design problem was formulated to find a manipulator geometry that minimized the global performance index with the constraints of the workspace and structural parameters limits. Since the optimal design problem is a constrained nonlinear optimization problem without explicit analytical expressions, the genetic algorithm was applied to numerically solve the problem. Simulation results indicate that the articular velocities of the optimal manipulators can be the minimum while the kinematic reauirements of the moving platform are satisfied.
基金Project (No.50775200) supported by the National Natural Science Foundation of China
文摘This paper presents a pressure observer based adaptive robust controller (POARC) for posture trajectory tracking of a parallel manipulator driven by three pneumatic muscles without pressure sensors. Due to model errors of the static forces and friction forces of pneumatic muscles, simplified average flow rate characteristics of valves, unknown disturbances of entire system, and unmeasured pressures, there exist rather severe parametric uncertainties, nonlinear uncertainties and dynamic uncertainties in modeling of the parallel manipulator. A nonlinear pressure observer is constructed to estimate unknown pressures on the basis of a single-input-single-output (SISO) decoupling model that is simplified from the actual multiple-input-multiple-output (MIMO) coupling model of the parallel manipulator. Then, an adaptive robust controller integrated with the pressure observer is developed to accomplish high precision posture trajectory tracking of the parallel manipulator. The experimental results indicate that the system with the proposed POARC not only achieves good control accuracy and smooth movement but also maintains robustness to disturbances.
基金Project(2013CB035504)supported by the National Basic Research Program of China
文摘An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg(D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2-4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Project(2012-0005688) supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST)
文摘Laser-assisted machining has been considered as a new alternative machining method of difficult-to-cut materials. A laser module with one-axis manipulator is developed to focus on preheating laser beam effectively. First of all, the thermal characteristic analysis was performed to verify the importance of laser module location. Laser module should be moved within 1 mm. Analysis conditions of three positions in driving range of the one-axis manipulator are selected. And a C coupling is used as a connection device for spindle and laser module. An initial model has one C coupling, and the number of C coupling has been increased from 1 to 2 in an improved model. And the analysis is carried out again for the one-axis manipulator. The results of the static analysis, the maximum displacement and the maximum stress are decreased by 22% and 11%, respectively, for the improved model when the laser module is located at farthest away from the spindle unit. As a result of the modal analysis, the first natural frequency mode is increased by 13%, 18% and 12% at these positions of the improved model, respectively. The harmonic analysis of the improved model was performed by analyzing the results of the modal analysis. The maximum deformation was 0.33 mm in driving unit at 222 Hz. And the maximum compliance of the ISO axis direction was 0.23 mm/N. Finally, the one-axis manipulator has been fabricated successfully using the analysis result.
基金the High Technology Research and Development Program of China(No.2004AA742201)
文摘The special fingers of the gripper on the space robot have been developed based on genetic algorithmfor the space application.Therefore,the symmetrical wedgelike finger composed of the 4-1ink mechanismand the relevant track were designed.To decrease the weight and optimize the kinematics and grip force,the compositive fitness function for dynamics and kinematics was created.The calculation efficiency couldbe improved by novel methods which overcame the problem of too many constraints in the solution space,such as introducing the specialist's experience and punishment function and simplifying the variables.The solutions show that the optimized finger could perform well and the methods were effectual.
基金Supported by the National Natural Science Foundation of China(No.51575471)Collaborative Innovation Program Topics of Heavy Machinery of Yanshan University(2011 Program,No.ZX01-20140400-01)
文摘Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.
基金Supported by the National Natural Science Foundation of China(No.51775284)Natural Science Foundation of Jiangsu Province(BK20151505)Joint Research Fund for Overseas Chinese,Hong Kong and Macao Young Scholars(61728302)
文摘Acceleration reflects vibration of a robot,and the vibration signal can reflect the operation state of the robot. Generally,detection of robot mechanical arm failure requires installing sensors on each joint. This study proposes a method to diagnose the fault by single acceleration sensor only,which is installed at the end of the robot. The operation state of the robot is evaluated by analyzing vibration characteristics of its acceleration. First,a data acquisition function of a programmable multi-axis controller is applied to extract practical motion signals of the robot joints during operation,and practical motion signals are analyzed. Second,synthetic methods to determine acceleration of the end joints of SCARA robots in a Cartesian space is used based on the theory of the Jacobian matrix and the frequency domain of final acceleration is investigated. The relationship between end-and joint-vibration frequencies under given speeds is determined. Then,the method is verified by comparing characteristic frequencies of joint acceleration and synthetic acceleration in Cartesian coordinate system at different speeds. Finally,some faults can be diagnosed by comparing the acceleration vibration frequency extracted by a single acceleration sensor installed at the end of robot with the normal running state. Thus,this method can be used to monitor the signal variation of each joint without installing sensors on each robot joint.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.
文摘In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.
基金Project (Nos. 50375111 and 50675188) supported by the National Natural Science Foundation of China
文摘The singular points of a 6-SPS Stewart platform are distributed on the multi-dimensional singularity hypersurface in the task-space, which divides the workspace of the manipulator into several singularity-free regions. Because of the motion un- certainty at singular points, while the manipulator traverses this kind of hypersurface from one singularity-free region to another, its motion cannot be predetermined. In this paper, a detailed approach for the manipulator to traverse the singularity hypersurface with its non-persistent configuration is presented. First, the singular point transfer disturbance and the pose disturbance, which make the perturbed singular point transfer horizontally and vertically, respectively, are constructed. Through applying these disturbances into the input parameters within the maximum loss control domain, the perturbed persistent configuration is transformed into its corresponding non-persistent one. Under the action of the disturbances, the manipulator can traverse the singularity hypersurface from one singularity-flee region to another with a desired configuration.
基金Project(J132012C001)supported by Technological Foundation of ChinaProject(2011YQ04013606)supported by National Major Scientific Instrument & Equipment Developing Projects,China
文摘The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balancing its model weight and multi-parametric distributions to the required accuracy. A novel measuring instrument of space manipulator is designed to orbital simulative motion and locational accuracy test. The camera system of space manipulator, calibrated by MOGA algorithm, is used to locational accuracy test in this measuring instrument. The experimental result shows that the absolute errors are [0.07, 1.75] mm for MOGA calibrating model, [2.88, 5.95] mm for MN method, and [1.19, 4.83] mm for LM method. Besides, the composite errors both of LM method and MN method are approximately seven times higher that of MOGA calibrating model. It is suggested that the MOGA calibrating model is superior both to LM method and MN method.
文摘Given a start pose and a goal pose, a large number of singularity-free poses are created randomly in the 6 dimensional task space, a short line segment is used to create a feasible path between two singularity-free poses. A well connected roadmap can be obtained and stored in the 6 dimension task space for a specific 6 DOF parallel manipulator in this way and a singularity-free path is queried to connect the start pose and the goal pose. So the singularity-free path planning between any two given poses for this parallel manipulator can be performed very efficiently. This singularity-free path planning method can be used with any type of parallel manipulator only if the matrix used can be given to define singularities.