A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the proc...A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is b...The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is believed that the mutation of coal permeability caused by the sudden loading or unloading of working face roof as periodic weighting occurs is the main reason that a lot of gas pour into the working face. Based on the above concept, the relation is established among abutment pressure during periodie weighting, permeability of coal seam and gas emission, and relation graph is drawn. Then the loading and unloading features of coal at the moment of fracture and non-fracture of main roof are revealed. And finally it is presented that the process of sudden loading or unloading as periodic weighting occurs plays an important role in rupture propagation of coal, analytical movement of gas and gas emission.展开更多
The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flo...The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material.展开更多
The study aims to determine a mathematical formula that correlates the vertical stiffness of the principal elements of a high speed railway. To do this, beginning on the traditional formulations, a new mathematical mo...The study aims to determine a mathematical formula that correlates the vertical stiffness of the principal elements of a high speed railway. To do this, beginning on the traditional formulations, a new mathematical model has been proposed, and has been verified and confirmed with the real information of high speed railways. Finally, there has been obtained a simple expression that correlates simply the vertical stiffness of the railway with the vertical stiffness of the elements that compound it, essentially with the base plate and the ballast system set. On the other hand, also the accuracy of the model has been verified to select the stiffness of the base plate and the ballast system depending on one of this stiffness and the total vertical stiffness that it is wanted. With this simplified formula, it is possible to optimize the vertical stiffness of the railway to obtain the best behavior in each zone and to reduce the final cost of the use of the via, taking in consideration the energy needed to move the trains, the maintenance cost, the useful life, etc.. The process to optimize the railway stiffness in each point depends on the vertical stiffness of the ballast and the sub-ballast, and it is possible to use different plate bases with different stiffness to obtain the optimal stiffness that has been previously obtained with a cost and maintenance analysis.展开更多
The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined ...The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined by constricted arc TIG(CA-TIG)welding process.One variable at a time approach of design of experiments(DOE)was used,in which ACCF was varied from 4 to 20 kHz at an interval of 5 levels while other parameters were kept constant.The joints welded using ACCF of 4 kHz exhibited superior tensile properties extending joint efficiency up to 99.20%.It is attributed to the grain refinement in fusion zone leading to the evolution of finer,discrete Laves phase in interdendritic areas.An increase of ACCF above 12 kHz caused severe grain growth and evolution of coarser Laves phase in fusion zone.Alloy 718 welds showed more obvious tendency for Nb segregation and Laves phase formation at higher levels of ACCF due to the slower cooling rate.The volume fraction of Laves phase was increased by 62.31%at ACCF of 20 kHz compared to that at 4 kHz,thereby reducing the tensile properties of joints.This is mainly due to the stacking of heat input in weld thermal cycles at increased levels of ACCF.展开更多
The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the ...The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.展开更多
Temporal and spatial evolution of proto-basins and magmatism in the North China Craton might provide information of its destruction.Overall,the destruction of the North China Craton is a heterogeneous process of botto...Temporal and spatial evolution of proto-basins and magmatism in the North China Craton might provide information of its destruction.Overall,the destruction of the North China Craton is a heterogeneous process of bottom upward and from margin toward interior,related to multiple interactions between the craton and its surrounding plates.The interior of craton would be initially destructed during the Early-Middle Jurassic.Subduction of the Paleo-Asian Ocean Plate may have destructed the northern margin of the North China Craton.Collision of the Yangtze Plate with the North China Craton is significant for the magmatic and tectonic activities during the Late Triassic-Middle Jurassic.Subductions of the Izanagi and Paleo-Pacific plates lead to the ultimate destruction of the North China Craton.Temporal and spatial evolution of the proto-basins and related magmatism in the North China Craton indicate that the dominant mechanism of the cratonic destruction may be thermal mechanical-chemical erosion.展开更多
The effect of paleo-Pacific subduction on the geological evolution of the western Pacific and continental China is likely complex. Nevertheless, our analysis of the distribution of Mesozoic granitoids in the eastern c...The effect of paleo-Pacific subduction on the geological evolution of the western Pacific and continental China is likely complex. Nevertheless, our analysis of the distribution of Mesozoic granitoids in the eastern continental China in space and time has led us to an interesting conclusion: The basement of the continental shelf beneath East and South China Seas may actually be of exotic origin geologically unrelated to the continental lithosphere of eastern China. By accepting the notion that the Jurassic- Cretaceous granitoids in the region are genetically associated with western Pacific subduction and the concept that subduction may cease to continue only if the trench is being jammed, then the termination of the granitoid magmatism throughout the vast region at -88±2 Ma manifests the likelihood of "sudden", or shortly beforehand (- 100 Ma), trench jam of the Mesozoic western Pacific subduction. Trench jam happens if the incoming "plate" or portion of the plate contains a sizeable mass that is too buoyant to subduct. The best candidate for such a buoyant and unsubductable mass is either an oceanic plateau or a micro-continent. We hypothesize that the basement of the Chinese continental shelf represents such an exotic, buoyant and unsubductable mass, rather than seaward extension of the continental lithosphere of eastern China. The locus of the jammed trench (i.e., the suture) is predictably located on the shelf in the vicinity of, and parallel to, the arc-curved coastal line of the southeast continental China. It is not straightforward to locate the locus in the northern section of the East China Sea shelf because of the more recent (〈20 Ma) tectonic re-organization associated with the opening of the Sea of Japan. We predict that the trench jam at - 100 Ma led to the re-orientation of the Pacific plate motion in the course of NNW direction as inferred from the age-progressive Emperor Seamount Chain of Hawaiian hotspot origin (its oldest unsubdued Meiji and Detroit seamounts are -82 Ma), making the boundary between the Pacific plate and the newly accreted plate of eastern Asia transform fault at the location east of the continental shelf of exotic origin. This explains the apparent-40 Myr magmatic gap from - 88 to - 50 Ma prior to present-day western Pacific subduction initiation. We propose that basement penetration drilling on well-chosen sites is needed to test the hypothesis in order to reveal the true nature of the Chinese continental shelf basement. This testing becomes critical and cannot longer be neglected in order to genuinely understand the tectonic evolution of the western Pacific and its effect on the geology of eastern China since the Mesozoic, including the cratonic lithosphere thinning, related magmatism/mineralization, and the mechanism of the subsequent South China Sea opening, while also offering novel perspectives on aspects of the plate tectonics theory. We also suggest the importance of future plate tectonic reconstruction of the western Pacific to consider the nature and histories of the Chinese continental shelf of exotic origin as well as the probable transform plate boundary from - 100 to -50 Ma. Effort is needed to reveal the true nature and origin of the - 88 ± 2 Ma granitic gneisses in Taiwan and the 110-88 Ma granitoids on the Hainan Island.展开更多
Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study ...Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
Due to the complexity of compressible flows,nonlinear hydrodynamic stability theories in supersonic boundary layers are not sufficient.In order to reveal the nonlinear interaction mechanisms of the rapidly amplified 3...Due to the complexity of compressible flows,nonlinear hydrodynamic stability theories in supersonic boundary layers are not sufficient.In order to reveal the nonlinear interaction mechanisms of the rapidly amplified 3-D disturbances in supersonic boundary layers at high Mach numbers,the nonlinear evolutions of different disturbances in flat-plate boundary layers at Mach number 4.5,6 and 8 are analyzed by numerical simulations.It can be concluded that the 3-D disturbances are amplified rapidly when the amplitude of the 2-D disturbance reaches a certain level.The most rapidly amplified 3-D disturbances are Klebanoff type(K-type)disturbances which have the same frequency as the 2-D disturbance.Among these K-type 3-D disturbances,the disturbances located at the junction of upper branch and lower branch of the neutral curve are amplified higher.Through analyzing the relationship between the amplification rate and the spanwise wavenumber of the 3-D disturbances at different evolution stages,the mechanism of the spanwise wavenumber selectivity of K-type 3-D disturbances in the presence of a finite amplitude 2-D disturbance is explained.展开更多
基金Project (51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject (50974038) supported by the National Natural Science Foundation of China+1 种基金Project (132002) supported by the Fok Ying Tong Education Foundation, ChinaProject (2011CB610405) supported by the National Basic Research Program of China
文摘A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.
基金Natural Science Foundation of China (No.50974054)Doctoral Program Foundation of the Ministry of Education (No.20070460001)National Key Basic Research and Development Program (No.2012CB723103)
文摘The relation between mining pressure field-fracture field and gas emission of working face is analyzed, and the concept that there is a stress point (or strain point) among permeability of coal is presented. It is believed that the mutation of coal permeability caused by the sudden loading or unloading of working face roof as periodic weighting occurs is the main reason that a lot of gas pour into the working face. Based on the above concept, the relation is established among abutment pressure during periodie weighting, permeability of coal seam and gas emission, and relation graph is drawn. Then the loading and unloading features of coal at the moment of fracture and non-fracture of main roof are revealed. And finally it is presented that the process of sudden loading or unloading as periodic weighting occurs plays an important role in rupture propagation of coal, analytical movement of gas and gas emission.
基金Project(51805256)supported by the National Natural Science Foundation of China。
文摘The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material.
文摘The study aims to determine a mathematical formula that correlates the vertical stiffness of the principal elements of a high speed railway. To do this, beginning on the traditional formulations, a new mathematical model has been proposed, and has been verified and confirmed with the real information of high speed railways. Finally, there has been obtained a simple expression that correlates simply the vertical stiffness of the railway with the vertical stiffness of the elements that compound it, essentially with the base plate and the ballast system set. On the other hand, also the accuracy of the model has been verified to select the stiffness of the base plate and the ballast system depending on one of this stiffness and the total vertical stiffness that it is wanted. With this simplified formula, it is possible to optimize the vertical stiffness of the railway to obtain the best behavior in each zone and to reduce the final cost of the use of the via, taking in consideration the energy needed to move the trains, the maintenance cost, the useful life, etc.. The process to optimize the railway stiffness in each point depends on the vertical stiffness of the ballast and the sub-ballast, and it is possible to use different plate bases with different stiffness to obtain the optimal stiffness that has been previously obtained with a cost and maintenance analysis.
基金This work was supported by the Indian Space Research Organization(ISRO),Department of Space,India,under ISRO RESPOND scheme(Project No.ISRO/RES/3/728/16-17).
文摘The main objective of this investigation is to study the influence of arc constriction current frequency(ACCF)on tensile properties and microstructural evolution of aerospace Alloy 718 sheets(2 mm in thickness)joined by constricted arc TIG(CA-TIG)welding process.One variable at a time approach of design of experiments(DOE)was used,in which ACCF was varied from 4 to 20 kHz at an interval of 5 levels while other parameters were kept constant.The joints welded using ACCF of 4 kHz exhibited superior tensile properties extending joint efficiency up to 99.20%.It is attributed to the grain refinement in fusion zone leading to the evolution of finer,discrete Laves phase in interdendritic areas.An increase of ACCF above 12 kHz caused severe grain growth and evolution of coarser Laves phase in fusion zone.Alloy 718 welds showed more obvious tendency for Nb segregation and Laves phase formation at higher levels of ACCF due to the slower cooling rate.The volume fraction of Laves phase was increased by 62.31%at ACCF of 20 kHz compared to that at 4 kHz,thereby reducing the tensile properties of joints.This is mainly due to the stacking of heat input in weld thermal cycles at increased levels of ACCF.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2013CB036202,2013CB036200)the National Natural Science Foundation of China(Grant No.51008254)+3 种基金the Funds from the Key Laboratory for Precision&Non-traditional Machining of the Ministry of Education,Dalian University of Technology(Grant No.JMTZ201002)the Fundamental Research Funds for the Central Universities(Grant No.2682013CX029)the Funds from the China Scholarship Councilthe 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.
基金supported by National Natural Science Foundation of China(Grant Nos.41003017,41273042,70914001)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KZCX1-YW-15-1)
文摘Temporal and spatial evolution of proto-basins and magmatism in the North China Craton might provide information of its destruction.Overall,the destruction of the North China Craton is a heterogeneous process of bottom upward and from margin toward interior,related to multiple interactions between the craton and its surrounding plates.The interior of craton would be initially destructed during the Early-Middle Jurassic.Subduction of the Paleo-Asian Ocean Plate may have destructed the northern margin of the North China Craton.Collision of the Yangtze Plate with the North China Craton is significant for the magmatic and tectonic activities during the Late Triassic-Middle Jurassic.Subductions of the Izanagi and Paleo-Pacific plates lead to the ultimate destruction of the North China Craton.Temporal and spatial evolution of the proto-basins and related magmatism in the North China Craton indicate that the dominant mechanism of the cratonic destruction may be thermal mechanical-chemical erosion.
基金supported by the National Natural Science Foundation of China(41130314,91014003)Chinese Academy of Sciences Innovation(Y42217101L),grants from Regional and Local Authorities(Shandong Province and City of Qingdao)+1 种基金supported by National Oceanography Laboratory in Qingdaosupported by the National Natural Science Foundation of China(NSFC)
文摘The effect of paleo-Pacific subduction on the geological evolution of the western Pacific and continental China is likely complex. Nevertheless, our analysis of the distribution of Mesozoic granitoids in the eastern continental China in space and time has led us to an interesting conclusion: The basement of the continental shelf beneath East and South China Seas may actually be of exotic origin geologically unrelated to the continental lithosphere of eastern China. By accepting the notion that the Jurassic- Cretaceous granitoids in the region are genetically associated with western Pacific subduction and the concept that subduction may cease to continue only if the trench is being jammed, then the termination of the granitoid magmatism throughout the vast region at -88±2 Ma manifests the likelihood of "sudden", or shortly beforehand (- 100 Ma), trench jam of the Mesozoic western Pacific subduction. Trench jam happens if the incoming "plate" or portion of the plate contains a sizeable mass that is too buoyant to subduct. The best candidate for such a buoyant and unsubductable mass is either an oceanic plateau or a micro-continent. We hypothesize that the basement of the Chinese continental shelf represents such an exotic, buoyant and unsubductable mass, rather than seaward extension of the continental lithosphere of eastern China. The locus of the jammed trench (i.e., the suture) is predictably located on the shelf in the vicinity of, and parallel to, the arc-curved coastal line of the southeast continental China. It is not straightforward to locate the locus in the northern section of the East China Sea shelf because of the more recent (〈20 Ma) tectonic re-organization associated with the opening of the Sea of Japan. We predict that the trench jam at - 100 Ma led to the re-orientation of the Pacific plate motion in the course of NNW direction as inferred from the age-progressive Emperor Seamount Chain of Hawaiian hotspot origin (its oldest unsubdued Meiji and Detroit seamounts are -82 Ma), making the boundary between the Pacific plate and the newly accreted plate of eastern Asia transform fault at the location east of the continental shelf of exotic origin. This explains the apparent-40 Myr magmatic gap from - 88 to - 50 Ma prior to present-day western Pacific subduction initiation. We propose that basement penetration drilling on well-chosen sites is needed to test the hypothesis in order to reveal the true nature of the Chinese continental shelf basement. This testing becomes critical and cannot longer be neglected in order to genuinely understand the tectonic evolution of the western Pacific and its effect on the geology of eastern China since the Mesozoic, including the cratonic lithosphere thinning, related magmatism/mineralization, and the mechanism of the subsequent South China Sea opening, while also offering novel perspectives on aspects of the plate tectonics theory. We also suggest the importance of future plate tectonic reconstruction of the western Pacific to consider the nature and histories of the Chinese continental shelf of exotic origin as well as the probable transform plate boundary from - 100 to -50 Ma. Effort is needed to reveal the true nature and origin of the - 88 ± 2 Ma granitic gneisses in Taiwan and the 110-88 Ma granitoids on the Hainan Island.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102,12002005,11632001,11521202)the Science Challenge Project(Grant No.TZ2018001).
文摘Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.11332007)
文摘Due to the complexity of compressible flows,nonlinear hydrodynamic stability theories in supersonic boundary layers are not sufficient.In order to reveal the nonlinear interaction mechanisms of the rapidly amplified 3-D disturbances in supersonic boundary layers at high Mach numbers,the nonlinear evolutions of different disturbances in flat-plate boundary layers at Mach number 4.5,6 and 8 are analyzed by numerical simulations.It can be concluded that the 3-D disturbances are amplified rapidly when the amplitude of the 2-D disturbance reaches a certain level.The most rapidly amplified 3-D disturbances are Klebanoff type(K-type)disturbances which have the same frequency as the 2-D disturbance.Among these K-type 3-D disturbances,the disturbances located at the junction of upper branch and lower branch of the neutral curve are amplified higher.Through analyzing the relationship between the amplification rate and the spanwise wavenumber of the 3-D disturbances at different evolution stages,the mechanism of the spanwise wavenumber selectivity of K-type 3-D disturbances in the presence of a finite amplitude 2-D disturbance is explained.