During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the i...During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.展开更多
Density functional method (B3p86) was used to optimize the structure of the molecule Fe2. The result showed that the ground electronic state for the molecule Fe2 is nonet state instead of septet state, which indicat...Density functional method (B3p86) was used to optimize the structure of the molecule Fe2. The result showed that the ground electronic state for the molecule Fe2 is nonet state instead of septet state, which indicates that there is a spin polarization effect in the molecule Fe2, i.e., in which there are 8 parallel spin electrons.In this case, the number of the unpaired d-orbit electrons is the largest, and these electrons occupy different spatial orbitals so that the energy of the molecule Fe2 is minimized. Meanwhile, the spin pollution was not found because the wave functions of the ground state do not mix with those of the higher energy states. In addition, the Murrell-Sorbie potential functions with the parameters for the ground electronic state and other exited electronic states of the molecule Fe2 were derived. The dissociation energy, equilibrium bond length and the vibration frequency for the ground electronic state of the molecule Fe2 are 3.5522 eV, 0.2137 nm and 292.914 cm^-1, respectively. Its force constants f2, f3 and f4 are 1.4115×1^02 a J/nm^2, -37.1751×103^aJ/nm^3 and 98.7596× 10^4 a J/nm^4, respectively. The other spectroscopic parameters ωexe, Be and αe for the ground electronic state of Fe2 are 0.3522, 0.0345 and 0.4963× 10^-4 cm^-1, respectively.展开更多
Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also ...Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.展开更多
Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered i...AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered in this model. Then the two-dimensional conduction band and electron distribution, electron temperature characteristics, Id versus Vd and Id versus Vg, transfer characteristics and transconductance curves are obtained. Corresponding analysis and discussion based on the simulation results are subsequently given.展开更多
Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa...Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.展开更多
To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different ma...To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.展开更多
The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface...The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface of Ho et al. (J. Chem. Phys. 119, 3063 (2003)). The peaks of the product angular distribution are found to be in both backward and forward directions for the two title reactions. The product rotational angular momentum is not only aligned, but also oriented along the negative direction of y-axis. These theoretical results are in good agreement with recent experimental findings for the two title reactions. The isotopic effect is also revealed and primarily attributed to the difference of the mass factor in the two title reactions.展开更多
Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 state...Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 states) of myoglobin have been experimentally indicated. In this study, ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation of CO in myoglobin was carried out to investigate the two possible B states. Our results demonstrate that the B1 and B2 states correspond to Fe... CO (with carbon atom closer to iron center of heme) and Fe... OC (with oxygen atom closer to Fe), by comparing with the experimental infrared spectrum. QM electrostatic polarization effect on CO brought from the protein and solvent environment is the main driving force, which anchors CO in two distinctive orientations and hinders its rotation. The calculated vibrational frequency shift between the state B1 and B2 is 13.1 cm-1, which is in good agreement with experimental value of 11.5 cm-1. This study also shows that the electric field produced by the solvent plays an important role in assisting protein functions by exerting directional electric field at the active site of the protein, From residue-based electric field decomposition, several residues were found to have most contributions to the total electric field at the CO center, including a few charged residues and three adjacent uncharged polar residues (namely, HIS64, ILE107, and PHE43). This study provides new physical insights on rational design of enzyme with higher electric field at the active site.展开更多
The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimenta...The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.展开更多
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi...After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.展开更多
To shield TiAl alloy from hot corrosion attack,a compact protective coating was fabricated by the combination of aluminizing,anodization and pre-oxidation.The hot corrosion behavior of the coated-TiAl specimen was inv...To shield TiAl alloy from hot corrosion attack,a compact protective coating was fabricated by the combination of aluminizing,anodization and pre-oxidation.The hot corrosion behavior of the coated-TiAl specimen was investigated in the mixture salt consisting of 75 wt.%Na2SO4 and 25 wt.%NaCl at 700°C.Results indicated that the anodization and pre-oxidation were beneficial to the generation of Al2O3 layer,which could act as a diffusion barrier to prevent the molten salts and oxygen from diffusing into the alloy during exposure to a hot corrosion environment while the aluminizing coating could provide sufficient aluminum source to support the continuous formation of Al2O3 layer.Moreover,the internal stress of the coating was reduced due to the formation of a gradient coating consisting of TiAl3 and TiAl2.展开更多
The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current di...The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.展开更多
We use the directional slacks-based measure of efficiency and inverse distance weighting method to analyze the spatial pattern evolution of the industrial green total factor productivity of 108 cities in the Yangtze R...We use the directional slacks-based measure of efficiency and inverse distance weighting method to analyze the spatial pattern evolution of the industrial green total factor productivity of 108 cities in the Yangtze River Economic Belt in 2003–2013.Results show that both the subprime mortgage crisis and ‘the new normal' had significant negative effects on productivity growth,leading to the different spatial patterns between 2003–2008 and 2009–2013.Before 2008,green poles had gathered around some capital cities and formed a tripartite pattern,which was a typical core-periphery pattern.Due to a combination of the polarization and the diffusion effects,capital cities became the growth poles and ‘core' regions,while surrounding areas became the ‘periphery'.This was mainly caused by the innate advantage of capital cities and ‘the rise of central China' strategy.After 2008,the tripartite pattern changed to a multi-poles pattern where green poles continuously and densely spread in the midstream and downstream areas.This is due to the regional difference in the leading effect of green poles.The leading effect of green poles in midstream and downstream areas has changed from polarization to diffusion,while the polarization effect still leads in the upstream area.展开更多
In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt...In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.展开更多
Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constan...Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constant α . Numerical and analytical results showed that the energy shift was more sensitive to α than to the Coulomb binding parameter ( β ) and increased with the decrease of effective quantum well width l Z . It was interesting that due to the electronic confinement in the quasi 2D (quantum well) structures, the lower bound of the strong coupling regime was shifted to smaller values of α . Comparison of the polaron in the quantum well with that in the quantum wire or dot showed that the polaronic effect strengthened with decrease of the confinement dimension.展开更多
C NMR spin-lattice relaxation times (T1), line widths, nuclear Overhauser effects (NOE) at room temperature have been measured for radiated ets 1,4-polybutadiene.With the increase of radiation dose T1 is almost invari...C NMR spin-lattice relaxation times (T1), line widths, nuclear Overhauser effects (NOE) at room temperature have been measured for radiated ets 1,4-polybutadiene.With the increase of radiation dose T1 is almost invariant, but line width of the methylene (-CH2-) carbon increases remarkably, and its NOE factor decreases sharply. This implies that the long-range segmental motion is hindered, and saturated tertiary carbon (-C H- ) is formed during crosslinking of ets 1,4-polybutadiene.展开更多
In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphe...In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine) and Alq3 (Tris-(8-quinolinolato)aluminum) act as the potential barrier layer and the potential well layer, respectively. In the electroluminescence, the blue shift of spectrum with the decreasing of well width is observed for the device with different well width, and this is interpreted by combination of quantum size effect and exciton confinement effect. The blue shift of spectrum with increasing applied voltage is observed for the same device, and this is interpreted in terms of polarization effect and quantum size effect.展开更多
基金supported by the National Technology R&D Program in the 11th Five year Plan of China(No.2007BAQ00168-1-1)the National Natural Science Foundation of China(No. 41103052/D0309)the Shanxi Province Excellent Graduate Innovation Program(No. 20113038)
文摘During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.
基金This work was supported by the National Natural Science Foundation of China (No. 10574096) the Research Fund for the Doctoral Program of High Education (No. 20050610010).
文摘Density functional method (B3p86) was used to optimize the structure of the molecule Fe2. The result showed that the ground electronic state for the molecule Fe2 is nonet state instead of septet state, which indicates that there is a spin polarization effect in the molecule Fe2, i.e., in which there are 8 parallel spin electrons.In this case, the number of the unpaired d-orbit electrons is the largest, and these electrons occupy different spatial orbitals so that the energy of the molecule Fe2 is minimized. Meanwhile, the spin pollution was not found because the wave functions of the ground state do not mix with those of the higher energy states. In addition, the Murrell-Sorbie potential functions with the parameters for the ground electronic state and other exited electronic states of the molecule Fe2 were derived. The dissociation energy, equilibrium bond length and the vibration frequency for the ground electronic state of the molecule Fe2 are 3.5522 eV, 0.2137 nm and 292.914 cm^-1, respectively. Its force constants f2, f3 and f4 are 1.4115×1^02 a J/nm^2, -37.1751×103^aJ/nm^3 and 98.7596× 10^4 a J/nm^4, respectively. The other spectroscopic parameters ωexe, Be and αe for the ground electronic state of Fe2 are 0.3522, 0.0345 and 0.4963× 10^-4 cm^-1, respectively.
文摘Low lying excited states of beryllium are calculated with multiconfiguration interaction method. The relativisitic corrections and mass polarization are included. The oscillator strength and radiation rates are also calculated. Our results are in good agreement with other theoretical data.
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.
文摘AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered in this model. Then the two-dimensional conduction band and electron distribution, electron temperature characteristics, Id versus Vd and Id versus Vg, transfer characteristics and transconductance curves are obtained. Corresponding analysis and discussion based on the simulation results are subsequently given.
基金ACKNOWLEDGMENTS This work was supported by the One Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and the National Basic Research Program of China National Science and Technology (No.2010CB923302).
文摘Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.
文摘To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.
基金ACKNOWLEDGMENTS The authors thank Prof. Ke-li Han for providing stereodynamics QCT code, and thank Dr. T. S. Ho and Prof. H. Rabitz for providing the potential energy surface. This work is supported by the National Natural Science Foundation of China (No.10947103), the Foundation for Outstanding Young Scientist in Shandong Province (No.2008BS01017), and the Young Fhnding of Jining University (No.2009QNKJ02).
文摘The vector correlations between products and reagents for the title reactions have been calculated by the quasi-classical trajectory method at a collision energy of 21.32 kJ/mol on an accurate potential energy surface of Ho et al. (J. Chem. Phys. 119, 3063 (2003)). The peaks of the product angular distribution are found to be in both backward and forward directions for the two title reactions. The product rotational angular momentum is not only aligned, but also oriented along the negative direction of y-axis. These theoretical results are in good agreement with recent experimental findings for the two title reactions. The isotopic effect is also revealed and primarily attributed to the difference of the mass factor in the two title reactions.
文摘Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 states) of myoglobin have been experimentally indicated. In this study, ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation of CO in myoglobin was carried out to investigate the two possible B states. Our results demonstrate that the B1 and B2 states correspond to Fe... CO (with carbon atom closer to iron center of heme) and Fe... OC (with oxygen atom closer to Fe), by comparing with the experimental infrared spectrum. QM electrostatic polarization effect on CO brought from the protein and solvent environment is the main driving force, which anchors CO in two distinctive orientations and hinders its rotation. The calculated vibrational frequency shift between the state B1 and B2 is 13.1 cm-1, which is in good agreement with experimental value of 11.5 cm-1. This study also shows that the electric field produced by the solvent plays an important role in assisting protein functions by exerting directional electric field at the active site of the protein, From residue-based electric field decomposition, several residues were found to have most contributions to the total electric field at the CO center, including a few charged residues and three adjacent uncharged polar residues (namely, HIS64, ILE107, and PHE43). This study provides new physical insights on rational design of enzyme with higher electric field at the active site.
基金This work was supported by the National Natural Science Foundation of China (No.21072053 and No.20772028) and the Scientific Research Fund of Hunan Provincial Education Department (No.10K025 and No.09C386).
文摘The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.
文摘After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51971205)Shenzhen Science and Technology Innovation Program,China(JCYJ20190807154005593)the Fundamental Research Funds for the Central Universities,China(19lgpy20).
文摘To shield TiAl alloy from hot corrosion attack,a compact protective coating was fabricated by the combination of aluminizing,anodization and pre-oxidation.The hot corrosion behavior of the coated-TiAl specimen was investigated in the mixture salt consisting of 75 wt.%Na2SO4 and 25 wt.%NaCl at 700°C.Results indicated that the anodization and pre-oxidation were beneficial to the generation of Al2O3 layer,which could act as a diffusion barrier to prevent the molten salts and oxygen from diffusing into the alloy during exposure to a hot corrosion environment while the aluminizing coating could provide sufficient aluminum source to support the continuous formation of Al2O3 layer.Moreover,the internal stress of the coating was reduced due to the formation of a gradient coating consisting of TiAl3 and TiAl2.
基金V, ACKNOWLEDGMENTS This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.
基金Under the auspices of the post-funded project of National Social Science Foundation of China(No.16FJL009)
文摘We use the directional slacks-based measure of efficiency and inverse distance weighting method to analyze the spatial pattern evolution of the industrial green total factor productivity of 108 cities in the Yangtze River Economic Belt in 2003–2013.Results show that both the subprime mortgage crisis and ‘the new normal' had significant negative effects on productivity growth,leading to the different spatial patterns between 2003–2008 and 2009–2013.Before 2008,green poles had gathered around some capital cities and formed a tripartite pattern,which was a typical core-periphery pattern.Due to a combination of the polarization and the diffusion effects,capital cities became the growth poles and ‘core' regions,while surrounding areas became the ‘periphery'.This was mainly caused by the innate advantage of capital cities and ‘the rise of central China' strategy.After 2008,the tripartite pattern changed to a multi-poles pattern where green poles continuously and densely spread in the midstream and downstream areas.This is due to the regional difference in the leading effect of green poles.The leading effect of green poles in midstream and downstream areas has changed from polarization to diffusion,while the polarization effect still leads in the upstream area.
基金Projects(51371039,51871031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.
文摘Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constant α . Numerical and analytical results showed that the energy shift was more sensitive to α than to the Coulomb binding parameter ( β ) and increased with the decrease of effective quantum well width l Z . It was interesting that due to the electronic confinement in the quasi 2D (quantum well) structures, the lower bound of the strong coupling regime was shifted to smaller values of α . Comparison of the polaron in the quantum well with that in the quantum wire or dot showed that the polaronic effect strengthened with decrease of the confinement dimension.
文摘C NMR spin-lattice relaxation times (T1), line widths, nuclear Overhauser effects (NOE) at room temperature have been measured for radiated ets 1,4-polybutadiene.With the increase of radiation dose T1 is almost invariant, but line width of the methylene (-CH2-) carbon increases remarkably, and its NOE factor decreases sharply. This implies that the long-range segmental motion is hindered, and saturated tertiary carbon (-C H- ) is formed during crosslinking of ets 1,4-polybutadiene.
基金the National Nature Science Foundation ofChina (60576016,10374001), the National Key Basic Research Spe-cial Foundation of China (2003CB314707),The National High Tech-nology Research and Development Program of China(2006AA0380412),the Beijing City Natural Science Foundation(2073030), the Key Item of National Nature Science Foundation ofChina (10434030),and the Excellent Doctor’s Science and Technol-ogy Innovation Foundation of Beijing Jiaotong University(48010).
文摘In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine) and Alq3 (Tris-(8-quinolinolato)aluminum) act as the potential barrier layer and the potential well layer, respectively. In the electroluminescence, the blue shift of spectrum with the decreasing of well width is observed for the device with different well width, and this is interpreted by combination of quantum size effect and exciton confinement effect. The blue shift of spectrum with increasing applied voltage is observed for the same device, and this is interpreted in terms of polarization effect and quantum size effect.