Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and ...Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).展开更多
Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models w...Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.展开更多
A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, t...A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new method of building a limit state equation for planar slip surfaces by applying the mathematical cusp catastrophe theory. This new technique overcomes the defects in the traditional rigid limit equilibrium theory and offers a new way for studying the reliability problem of planar slip surfaces. Consequently, we applied the technique to a case of an open-pit mine and compared our results with that of the traditional approach. From the results we conclude that both methods are essentially consistent, but the reliability index calculated by the traditional model is lower than that from the catastrophic model. The catastrophe model takes into consideration two possible situations of a slope being in the limit equilibrium condition, i.e., it may or may not slip. In the traditional method, however, a slope is definitely considered as slipping when it meets the condition of a limit equilibrium. We conclude that the catastrophe model has more actual and instructive importance compared to the traditional model.展开更多
Meeting deliverable deadline is a critical issue for successful organization. Last minute adjustments characterize software development due to many reasons including not testing thoroughly. XP (Practicing Extreme Pro...Meeting deliverable deadline is a critical issue for successful organization. Last minute adjustments characterize software development due to many reasons including not testing thoroughly. XP (Practicing Extreme Programming), which is an agile software development methodology, gives rise to the issue of pair programming. This paper aims at discussing the strengths and weaknesses of an Extreme Programming methodology by examining the characteristics of the 12 software development practices of the XP methodology. Working together will incur in a highly reliable functionalities to release. Furthermore, moving people around will allow the team to keep track of the whole project.展开更多
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schr...Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schroedinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schroedinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.展开更多
The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solutio...The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.展开更多
There are several important generalizations of martingales such as games fairer with time, quasi-mils and sequential martingales in the limit. In the note, we shall consider all possible structures of a probability sp...There are several important generalizations of martingales such as games fairer with time, quasi-mils and sequential martingales in the limit. In the note, we shall consider all possible structures of a probability space (Ω,A, (An), P) associated with a stochastic basis(An) of sub a-fields of A with An ↑ A. Then, we shall apply them to establish some comparison results for the aforementioned generalizations of martingales.展开更多
The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to m...The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to many reasons, such as measurement error, production batch, etc., is not a fixed value. This paper on pipeline integrity established limit state equation, using Monte Carlo method to calculate the gas pipeline in different pressures of reliability, according to the API (American Petroleum Institute) 579 recommended target reliability to determine the operating pressure of the different regions, and design coefficient method, the calculated results are compared, results of calculation reliability is more reasonable and improve the delivery pressure of the area, the pipeline safety management provides the basis.展开更多
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa...In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.展开更多
The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that ...The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that some instability problems might occur in the slope.In this research,the southern slope,which is divided into six sections(I-0,I-1,I-2,II-0,II-1 and II-2),is selected for slope stability analysis using limit equilibrium and numerical method.Stability results show that the values of factor of safety(FOS) of sections I-0,I-1 and I-2 are very low and slope failure is likely to happen.Therefore reinforcement subjected to seismic,water and weak layer according to sections were carried out to increase the factor of safety of the three sections,two methods were used;grouting with hydration of cement and water to increase the cohesion(c) and pre-stressed anchor.Results of reinforcement showed that factor of safety increased more than 1.15.展开更多
Delay differential systems are widely used in many different fields, It is important to determine the local stability of their equilibria, For systems with' delay dependent parameters, the stability analysis of equil...Delay differential systems are widely used in many different fields, It is important to determine the local stability of their equilibria, For systems with' delay dependent parameters, the stability analysis of equilibria is complicated and difficult In this paper, we shall investigate the ultimate stability of a type of characteristic equation with delay dependent parameters. Our results show that the characteristic equation with delay dependent parameters may be one of ultimately stable, ultimately unstable, and alternate between stable and unstable. Applying our results, the ultimate stability can be often decided directly and need not appeal to mathematic software. Two examples are given in this paper,展开更多
The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this pa...The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this paper.In a paper(Comm.Pure Appl.Math.,46,1993,621-665) by Z.P.Xin,the author constructed a sequence of solutions to one-dimensional Navier-Stokes isentropic equations converging to the rarefaction wave as the viscosity tends to zero.Furthermore,he obtained that the convergence rate is ε 1/4 | ln ε|.In this paper,Xin's convergence rate is improved to ε1/3|lnε|2 by different scaling arguments.The new scaling has various applications in related problems.展开更多
The authors study the asymptotic behaviour of solutions of the heat equation and a number of evolution equations using scaling techniques. It is proved that in the framework of bounded data stabilization need not occu...The authors study the asymptotic behaviour of solutions of the heat equation and a number of evolution equations using scaling techniques. It is proved that in the framework of bounded data stabilization need not occur and the general asymptotic behaviour is complex. This behaviour reflects for large times, even on compact sets, the complexity of the initial data at infinity.展开更多
This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string...This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string of points which are moving randomly as Brownian motions and under elastic forces. Every two points on the same string or on two different strings also interact under a pairwise potential V. The dynamics of the system is described by a system of N coupled stochastic partial differential equations (SPDEs). We show that the mean field limit as N -+ c~ of the system is a self-consistent McKean-Vlasov type equation, under suitable assumptions on the initial and boundary conditions and regularity of V. We also prove that both the SPDE system of the polymers and the mean field limit equation are well-posed.展开更多
This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of...This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of the convergence of the velocity fields defined through the solutions of the Gross-Pitaevskii equation to the strong solution of the incompressible Euler equations. Furthermore, we also obtain the rates of the convergence.展开更多
The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The ...The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The proof relies on a careful analysis of a related Abelian integral.展开更多
文摘Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).
基金The National Natural Science Foundation of China(No.11047005)the Science Foundation of Southeast University
文摘Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
基金financial support from Changjiang Scholars and Innovative Research Team in University, and research project of ‘SUST Spring Bud’
文摘A method of slope reliability analysis was developed by imposing a state equation on the limit equilibrium theory, given the basis of a fixed safety factor technique. Among the many problems of reliability analysis, the most important problem is to find a performance function. We have created a new method of building a limit state equation for planar slip surfaces by applying the mathematical cusp catastrophe theory. This new technique overcomes the defects in the traditional rigid limit equilibrium theory and offers a new way for studying the reliability problem of planar slip surfaces. Consequently, we applied the technique to a case of an open-pit mine and compared our results with that of the traditional approach. From the results we conclude that both methods are essentially consistent, but the reliability index calculated by the traditional model is lower than that from the catastrophic model. The catastrophe model takes into consideration two possible situations of a slope being in the limit equilibrium condition, i.e., it may or may not slip. In the traditional method, however, a slope is definitely considered as slipping when it meets the condition of a limit equilibrium. We conclude that the catastrophe model has more actual and instructive importance compared to the traditional model.
文摘Meeting deliverable deadline is a critical issue for successful organization. Last minute adjustments characterize software development due to many reasons including not testing thoroughly. XP (Practicing Extreme Programming), which is an agile software development methodology, gives rise to the issue of pair programming. This paper aims at discussing the strengths and weaknesses of an Extreme Programming methodology by examining the characteristics of the 12 software development practices of the XP methodology. Working together will incur in a highly reliable functionalities to release. Furthermore, moving people around will allow the team to keep track of the whole project.
文摘Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schroedinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schroedinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
文摘The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.
基金Supported by the Natural Science Foundation of the Education Department of Henan province(200510483002)
文摘There are several important generalizations of martingales such as games fairer with time, quasi-mils and sequential martingales in the limit. In the note, we shall consider all possible structures of a probability space (Ω,A, (An), P) associated with a stochastic basis(An) of sub a-fields of A with An ↑ A. Then, we shall apply them to establish some comparison results for the aforementioned generalizations of martingales.
文摘The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to many reasons, such as measurement error, production batch, etc., is not a fixed value. This paper on pipeline integrity established limit state equation, using Monte Carlo method to calculate the gas pipeline in different pressures of reliability, according to the API (American Petroleum Institute) 579 recommended target reliability to determine the operating pressure of the different regions, and design coefficient method, the calculated results are compared, results of calculation reliability is more reasonable and improve the delivery pressure of the area, the pipeline safety management provides the basis.
文摘In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.
基金support of Jiangxi Copper Company Limited (Chengmenshan Copper Mine)China Nerin Engineering Co.,Ltd.supported by the National Natural Science Foundation of China (No.11372363)
文摘The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that some instability problems might occur in the slope.In this research,the southern slope,which is divided into six sections(I-0,I-1,I-2,II-0,II-1 and II-2),is selected for slope stability analysis using limit equilibrium and numerical method.Stability results show that the values of factor of safety(FOS) of sections I-0,I-1 and I-2 are very low and slope failure is likely to happen.Therefore reinforcement subjected to seismic,water and weak layer according to sections were carried out to increase the factor of safety of the three sections,two methods were used;grouting with hydration of cement and water to increase the cohesion(c) and pre-stressed anchor.Results of reinforcement showed that factor of safety increased more than 1.15.
基金This work was supported by China Ministry of Science and Technology(2004BA719A01)Postdoctoral Function of China(2005037785).
文摘Delay differential systems are widely used in many different fields, It is important to determine the local stability of their equilibria, For systems with' delay dependent parameters, the stability analysis of equilibria is complicated and difficult In this paper, we shall investigate the ultimate stability of a type of characteristic equation with delay dependent parameters. Our results show that the characteristic equation with delay dependent parameters may be one of ultimately stable, ultimately unstable, and alternate between stable and unstable. Applying our results, the ultimate stability can be often decided directly and need not appeal to mathematic software. Two examples are given in this paper,
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars(No. 10825102)the National Basic Research Program of China (973 Program) (No. 2011CB808002)
文摘The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this paper.In a paper(Comm.Pure Appl.Math.,46,1993,621-665) by Z.P.Xin,the author constructed a sequence of solutions to one-dimensional Navier-Stokes isentropic equations converging to the rarefaction wave as the viscosity tends to zero.Furthermore,he obtained that the convergence rate is ε 1/4 | ln ε|.In this paper,Xin's convergence rate is improved to ε1/3|lnε|2 by different scaling arguments.The new scaling has various applications in related problems.
文摘The authors study the asymptotic behaviour of solutions of the heat equation and a number of evolution equations using scaling techniques. It is proved that in the framework of bounded data stabilization need not occur and the general asymptotic behaviour is complex. This behaviour reflects for large times, even on compact sets, the complexity of the initial data at infinity.
基金supported by National Natural Science Foundation of China(Grant No.91130005)the US Army Research Office(Grant No.W911NF-11-1-0101)
文摘This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string of points which are moving randomly as Brownian motions and under elastic forces. Every two points on the same string or on two different strings also interact under a pairwise potential V. The dynamics of the system is described by a system of N coupled stochastic partial differential equations (SPDEs). We show that the mean field limit as N -+ c~ of the system is a self-consistent McKean-Vlasov type equation, under suitable assumptions on the initial and boundary conditions and regularity of V. We also prove that both the SPDE system of the polymers and the mean field limit equation are well-posed.
基金supported by National Natural Science Foundation of China(Grant No.11271184)China Scholarship Council,the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Tsz-Tza Foundation,and Ministry of Science and Technology(Grant No.104-2628-M-006-003-MY4)
文摘This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of the convergence of the velocity fields defined through the solutions of the Gross-Pitaevskii equation to the strong solution of the incompressible Euler equations. Furthermore, we also obtain the rates of the convergence.
基金the National Natural Science Foundation of China (No.10101031. No. 10071097). Guangdong Natural Science Foundation (No. 001289)
文摘The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The proof relies on a careful analysis of a related Abelian integral.