Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor...As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.展开更多
With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorat...With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-o...Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-operative joint alignment.However,contemporary approaches,such as kinematic alignments and hybrid techniques including adjusted mechanical,restricted kinematic,inverse kinematic,and functional alignments,are gaining attention for their ability to restore native joint kinematics and anatomical alignment,potentially leading to enhanced functional outcomes and greater patient satisfaction.The ongoing debate on optimal alignment strategies considers the following factors:long-term implant durability,functional improvement,and resolution of individual anatomical variations.Furthermore,advancements of computer-navigated and robotic-assisted surgery has augmented the precision in implant positioning and objective measurements of soft tissue balance.Despite ongoing debates on balancing implant longevity and functional outcomes,there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations.This review evaluates the spectrum of various alignment techniques in TKA,including mechanical alignment,patient-specific kinematic approaches,and emerging hybrid methods.Each technique is scrutinized based on its fundamental principles,procedural techniques,inherent advantages,and potential limitations,while identifying significant clinical gaps that underscore the need for further investigation.展开更多
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated....Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.展开更多
The design and fabrication of a RF MEMS switch is reported for the first time in China.The switching element consists of a thin metallic membrane,which has the metal-isolator-metal contact and a capacitive shunt switc...The design and fabrication of a RF MEMS switch is reported for the first time in China.The switching element consists of a thin metallic membrane,which has the metal-isolator-metal contact and a capacitive shunt switch as single-pole single-throw.When an electrostatic potential is applied to the membrane and the bottom electrode,the attractive electrostatic force pulls the metal membrane down onto the bottom dielectric.The switch characteristics,such as insertion loss and isolation,depend on the off and on-capacitance.The test results are as follows:the pulldown voltage is about 20V;the insertion loss is less than 0 69dB from DC to 20GHz in the up-state;the isolation is more than 13dB from 14 to 18GHz and 16dB from 18 to 20GHz in the down-state.展开更多
A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analys...The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.展开更多
A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. ...A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. Effects of vibration acceleration and mass ratio on the microstructure of Al-5% Cu alloy were investigated. Results show that the present mechanical vibration could provide localized cooling by extracting heat from the interior of molten alloy, and the cooling rate is strongly dependent on vibration acceleration. It is difficult to refine the solidified microstructure when the treated alloy keeps full liquid state within the entire vibrating duration. Significantly refined microstructure was obtained by applying mechanical vibration during the initial stage of solidification. Moreover, mechanisms of grain refinement were discussed.展开更多
Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The ...Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.展开更多
[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were e...[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.展开更多
The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated ...The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated with the aid of experimental morphological and radioisotope technique. Most radioactivity of H-3-JA sustained in treated site within one hour while no radioactivity was detected in new shoot and the radioactivity in upper leaf was much less than that in the parts below the treated site, suggesting that JA was mainly transported downwards in the shoot of H brasiliensis. Mechanical wounding hindered the entrance of exogenous JA remarkably while held back the entered JA to the regions around wounded site. The effect of exogenous JA and mechanical wounding on the induction of the secondary laticifer differentiation was limited to treated site where high level of JA was expected. Mechanical wounding reduced the effect of exogenous JA on the differentiation of secondary laticifer, which could be ascribed to the hindrance of mechanical wounding to the entrance of exogenous JA. It was concluded from the combined data that a high accumulation of JA was required for inducing the secondary laticifer differentiation in H. brasiliensis.展开更多
(TiB2+TiC)/Ni3Al composites were prepared by mechanical alloying of elemental powders and subsequently spark plasma sintering.Microstructure of(TiB2+TiC)/Ni3Al composite sintered at 950°C was finer than tha...(TiB2+TiC)/Ni3Al composites were prepared by mechanical alloying of elemental powders and subsequently spark plasma sintering.Microstructure of(TiB2+TiC)/Ni3Al composite sintered at 950°C was finer than that of composite sintered at 1050°C.The influence of grain size on cyclic oxidation behavior was investigated.Cyclic oxidation results showed that the composite sintered at 950°C had smaller mass gains than the composite sintered at 1050°C.XRD and EDS results indicate that finer grain size is beneficial for increasing the oxidation resistance by improving the formation of a continuous TiO2 outer layer and a continuous Al2O3 inner layer on the surface of the composites sintered at 950°C.展开更多
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ...The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金supports from the National Natural Science Foundation of China(Nos.52371065,52001128)the Hubei Provincial Natural Science Foundation of China(No.2023AFB637)。
文摘As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.
基金Supported by China Agriculture Research System(Sugar Crops)of Ministry of Agriculture and Rural Affairs and Ministry of Finance(CARS-170601)Natural Science Foundation of Heilongjiang Province(C201239).
文摘With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.
文摘Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-operative joint alignment.However,contemporary approaches,such as kinematic alignments and hybrid techniques including adjusted mechanical,restricted kinematic,inverse kinematic,and functional alignments,are gaining attention for their ability to restore native joint kinematics and anatomical alignment,potentially leading to enhanced functional outcomes and greater patient satisfaction.The ongoing debate on optimal alignment strategies considers the following factors:long-term implant durability,functional improvement,and resolution of individual anatomical variations.Furthermore,advancements of computer-navigated and robotic-assisted surgery has augmented the precision in implant positioning and objective measurements of soft tissue balance.Despite ongoing debates on balancing implant longevity and functional outcomes,there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations.This review evaluates the spectrum of various alignment techniques in TKA,including mechanical alignment,patient-specific kinematic approaches,and emerging hybrid methods.Each technique is scrutinized based on its fundamental principles,procedural techniques,inherent advantages,and potential limitations,while identifying significant clinical gaps that underscore the need for further investigation.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.
文摘The design and fabrication of a RF MEMS switch is reported for the first time in China.The switching element consists of a thin metallic membrane,which has the metal-isolator-metal contact and a capacitive shunt switch as single-pole single-throw.When an electrostatic potential is applied to the membrane and the bottom electrode,the attractive electrostatic force pulls the metal membrane down onto the bottom dielectric.The switch characteristics,such as insertion loss and isolation,depend on the off and on-capacitance.The test results are as follows:the pulldown voltage is about 20V;the insertion loss is less than 0 69dB from DC to 20GHz in the up-state;the isolation is more than 13dB from 14 to 18GHz and 16dB from 18 to 20GHz in the down-state.
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.
基金Project(50804023)supported by the National Natural Science Foundation of ChinaProject(GJJ12032)supported by the Education Department of Jiangxi Province,China+1 种基金Project(20122BAB206021)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(20122BCB23001)supported by the Jiangxi Province Young Scientists Cultivating Programs,China
文摘A mechanical vibration technique to refine solidified microstructure was reported. Vibration energy was directly introduced into a molten alloy by a vibrating horn, and the vibrating horn was melted during vibration. Effects of vibration acceleration and mass ratio on the microstructure of Al-5% Cu alloy were investigated. Results show that the present mechanical vibration could provide localized cooling by extracting heat from the interior of molten alloy, and the cooling rate is strongly dependent on vibration acceleration. It is difficult to refine the solidified microstructure when the treated alloy keeps full liquid state within the entire vibrating duration. Significantly refined microstructure was obtained by applying mechanical vibration during the initial stage of solidification. Moreover, mechanisms of grain refinement were discussed.
基金Project(51064002)supported by the National Natural Science Foundation of ChinaProject(0728238)supported by the Natural Science Foundation of Guangxi Province,China
文摘Neutral leach residue of zinc calcine (NLRZC) was mechanically activated by a stirring ball mill. Subsequently, the changes in physicochemical properties and dissolution kinetics in sulphuric acid were studied. The crystalline structure, morphology, particle size and specific surface area of the non-activated and mechanically activated NLRZC were characterized by X-ray diffraction, scanning electron microscope, particle size analyzer and volumetric adsorption analyzer, respectively. The characterization results indicate that mechanical activation (MA) induced remarkable changes in the physicochemical properties of NLRZC. The leaching experiments show that MA significantly enhances the leaching reactivity of NLRZC using the zinc extraction as evaluating index. After NLRZC is mechanically activated for 30 min and 60 min, the activation energy decreases from 56.6 kJ/mol of non-activated NLRZC to 36.1 kJ/mol and 29.9 kJ/mol, respectively. The reaction orders of the non-activated, 30 and 60 min activated NLRZC dissolution with respect to H2SO4 concentration were found to be 0.34, 0.30, and 0.29, respectively.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA10A10403)National Key Technology Research and Development Program(2010BAD01B06)+1 种基金Jiangsu Province Science and Technology Support Program(BE2012327)Jiangsu Agricultural Science and Technology Innovation Fund(CX(14)2003)~~
文摘[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.
文摘The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated with the aid of experimental morphological and radioisotope technique. Most radioactivity of H-3-JA sustained in treated site within one hour while no radioactivity was detected in new shoot and the radioactivity in upper leaf was much less than that in the parts below the treated site, suggesting that JA was mainly transported downwards in the shoot of H brasiliensis. Mechanical wounding hindered the entrance of exogenous JA remarkably while held back the entered JA to the regions around wounded site. The effect of exogenous JA and mechanical wounding on the induction of the secondary laticifer differentiation was limited to treated site where high level of JA was expected. Mechanical wounding reduced the effect of exogenous JA on the differentiation of secondary laticifer, which could be ascribed to the hindrance of mechanical wounding to the entrance of exogenous JA. It was concluded from the combined data that a high accumulation of JA was required for inducing the secondary laticifer differentiation in H. brasiliensis.
基金Project(QC2010110)supported by Heilongjiang Province Natural Science Foundation,China
文摘(TiB2+TiC)/Ni3Al composites were prepared by mechanical alloying of elemental powders and subsequently spark plasma sintering.Microstructure of(TiB2+TiC)/Ni3Al composite sintered at 950°C was finer than that of composite sintered at 1050°C.The influence of grain size on cyclic oxidation behavior was investigated.Cyclic oxidation results showed that the composite sintered at 950°C had smaller mass gains than the composite sintered at 1050°C.XRD and EDS results indicate that finer grain size is beneficial for increasing the oxidation resistance by improving the formation of a continuous TiO2 outer layer and a continuous Al2O3 inner layer on the surface of the composites sintered at 950°C.
基金Project(2009FJ3082)supported by Research Project of Science and Technology in Hunan Province,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.