AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study...Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which r...A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which respectively corresponds to five kinds of concept similarity computation methods. Many existing ontology mapping approaches have adopted the multi-feature reasoning, whereas not all feature information can be com- puted in the real ontology mapping and only fractional feature information needs to be selected in the mapping computation. Consequently a eonfigurable ontology mapping model is introduced, which is composed of CMT model, SMT model and related transformation model. Through the configurable model, users can conveniently select the most suitable features and configure the suitable weights. Simultaneously, a related 3-step ontology mapping approach is also introduced. Associated with the traditional name and instance learner-based ontology mapping approach, this approach is evaluated by an ontology mapping application example.展开更多
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swar...Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.展开更多
Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to...Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.展开更多
The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of...The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of time-series, time-series forecasting model becomes more complicated, and consequently great concern has been drawn to the techniques in designing the forecasting model. A modeling method which is easy to use by engineers and may generate good results is in urgent need. In this paper, a gradient-boost AR ensemble learning algorithm (AREL) is put forward. The effectiveness of AREL is assessed by theoretical analyses, and it is demonstrated that this method can build a strong predictive model by assembling a set of AR models. In order to avoid fitting exactly any single training example, an insensitive loss function is introduced in the AREL algorithm, and accordingly the influence of random noise is reduced. To further enhance the capability of AREL algorithm for non-stationary time-series, improve the robustness of algorithm, discourage overfitting, and reduce sensitivity of algorithm to parameter settings, a weighted kNN prediction method based on AREL algorithm is presented. The results of numerical testing on real data demonstrate that the proposed modeling method and prediction method are effective.展开更多
With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbul...With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.展开更多
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金Projects(2007JT3018, 2008JT1013, 2009FJ4056) supported by the Key Project in Hunan Science and Technology Program, ChinaProject(20090161120014) supported by the New Teachers Sustentation Fund in Doctoral Program, Ministry of Education, China
文摘Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
基金Sponsored by the 973 Natural Key Basis Research and Development Plan (Grant No.973: 2003CB316905)the National Natural Science Foundationof China (Grant No.60374071)
文摘A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which respectively corresponds to five kinds of concept similarity computation methods. Many existing ontology mapping approaches have adopted the multi-feature reasoning, whereas not all feature information can be com- puted in the real ontology mapping and only fractional feature information needs to be selected in the mapping computation. Consequently a eonfigurable ontology mapping model is introduced, which is composed of CMT model, SMT model and related transformation model. Through the configurable model, users can conveniently select the most suitable features and configure the suitable weights. Simultaneously, a related 3-step ontology mapping approach is also introduced. Associated with the traditional name and instance learner-based ontology mapping approach, this approach is evaluated by an ontology mapping application example.
基金Natural Science Foundation of Guangxi (0832019Z)Natural Science Foundation of China (40675023)
文摘Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.
文摘Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.
基金supported by the National Natural Science Foundation of China (Grant No. 60974101)Program for New Century Talents of Education Ministry of China (Grant No. NCET-06-0828)
文摘The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of time-series, time-series forecasting model becomes more complicated, and consequently great concern has been drawn to the techniques in designing the forecasting model. A modeling method which is easy to use by engineers and may generate good results is in urgent need. In this paper, a gradient-boost AR ensemble learning algorithm (AREL) is put forward. The effectiveness of AREL is assessed by theoretical analyses, and it is demonstrated that this method can build a strong predictive model by assembling a set of AR models. In order to avoid fitting exactly any single training example, an insensitive loss function is introduced in the AREL algorithm, and accordingly the influence of random noise is reduced. To further enhance the capability of AREL algorithm for non-stationary time-series, improve the robustness of algorithm, discourage overfitting, and reduce sensitivity of algorithm to parameter settings, a weighted kNN prediction method based on AREL algorithm is presented. The results of numerical testing on real data demonstrate that the proposed modeling method and prediction method are effective.
基金supported by the National Natural Science Foundation of China(Grant Nos.92152301,and 91852115)the National Numerical Wind tunnel Project(Grand No.NNW2018-ZT1B01).
文摘With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.