Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor...Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.展开更多
To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amp...To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amplitude to the local attributes of speech on the basis of discontinuity measures. The adaptive smoothing algorithm in this paper utilizes a scale-space framework through the minimal description length (MDL). We recommend using the fuzzy muhi-attribute decision making approach to select the proper sub-bands where the word boundary can be more reliably detected. The process and simulation of the fuzzy adaptive smoothing algorithm are given. The parameters utilize the mean amplitude of the audible frequency range (300 -3 700 Hz) and the sub-band mean of the amplitude (16 band filter-bank). We selected the audible band energy because of its usefulness in detecting high-energy regions and making the distinction between speech and noise. Otherwise, the fuzzy adaptive smoothing algorithm is processed in sub-band speech to utilize the full range of frequency information.展开更多
This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is descri...This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales, large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlap- add manner across the three scales by using a psychoacoustically weighted matching pursuits. The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions.This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using tile same number of sinusoids. Tile most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.展开更多
Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dime...Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.展开更多
This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids...This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.展开更多
Atypical lipomatous tumor (ALT) of the laryngopharynx is rare.Here we report five cases to demonstrate their clinicopathological features.The patients were four males and one female,aged 41 to 69 years (median 53.6 ye...Atypical lipomatous tumor (ALT) of the laryngopharynx is rare.Here we report five cases to demonstrate their clinicopathological features.The patients were four males and one female,aged 41 to 69 years (median 53.6 years).All tumors (two in the hypopharynx and three in the larynx) presented as a slowly growing,painless mass.Symptoms included dysphagia (2/5),dysphonia (3/5),and the feeling of a foreign body in the throat (5/5).Tumors were well circumscribed or focally infiltrative,ranging from 2.0 to 5.0 cm (median,3.4 cm) in size,and microscopically showed the typical features of lipoma-like ALT.Immunohistochemically,tumor cells were stained with S-100,vimentin,murine double minute 2 (MDM-2),and cyclin-dependent kinase 4 (CDK4).Two patients had local tumor recurrences at 6 and 14 months after initial surgery during follow-up.ALT of laryngopharynx is an indolent tumor.Immunohistochemical staining for MDM-2 and CDK4 is helpful in pathological diagnosis.展开更多
基金supported by the National Natural Science Foundation of China(No.41104068)the Deep Exploration in China,Sino Probe-03-05
文摘Scalar CSAMT is only suitable for measurements in one and two dimensions perpendicular to geological structures. For complex 3D geoelectric structure, tensor CSAMT is more suitable. In this paper, we discuss 3D tensor CSAMT forward modeling using the vector finite-element method. To verify the feasibility of the algorithm, we calculate the electric field, magnetic field, and tensor impedance of the 3D CSAMT far-zone field in layered media and compare them with theoretical solutions. In addition, a three-dimensional anomaly in half-space is also simulated, and the response characteristics of the impedance tensor and the apparent resistivity and impedance phase are analyzed. The results suggest that the vector finite-element method produces high-precision electromagnetic field and impedance tensor data, satisfies the electric field discontinuity, and does not require divergence correction using the vector finite-element method.
文摘To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amplitude to the local attributes of speech on the basis of discontinuity measures. The adaptive smoothing algorithm in this paper utilizes a scale-space framework through the minimal description length (MDL). We recommend using the fuzzy muhi-attribute decision making approach to select the proper sub-bands where the word boundary can be more reliably detected. The process and simulation of the fuzzy adaptive smoothing algorithm are given. The parameters utilize the mean amplitude of the audible frequency range (300 -3 700 Hz) and the sub-band mean of the amplitude (16 band filter-bank). We selected the audible band energy because of its usefulness in detecting high-energy regions and making the distinction between speech and noise. Otherwise, the fuzzy adaptive smoothing algorithm is processed in sub-band speech to utilize the full range of frequency information.
基金Supported by the National Natural Science Foundation of China(No.69802007)Motorola China Research Center(No.B38300)Natural Science Foundation of Guangdong(No.011611)
文摘This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales, large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlap- add manner across the three scales by using a psychoacoustically weighted matching pursuits. The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions.This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using tile same number of sinusoids. Tile most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.
基金Supported by the National Natural Science Foundation of China(No.60472058,60975017)the Fundamental Research Funds for the Central Universities(No.2009B32614,2009B32414)
文摘Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.
文摘This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.
文摘Atypical lipomatous tumor (ALT) of the laryngopharynx is rare.Here we report five cases to demonstrate their clinicopathological features.The patients were four males and one female,aged 41 to 69 years (median 53.6 years).All tumors (two in the hypopharynx and three in the larynx) presented as a slowly growing,painless mass.Symptoms included dysphagia (2/5),dysphonia (3/5),and the feeling of a foreign body in the throat (5/5).Tumors were well circumscribed or focally infiltrative,ranging from 2.0 to 5.0 cm (median,3.4 cm) in size,and microscopically showed the typical features of lipoma-like ALT.Immunohistochemically,tumor cells were stained with S-100,vimentin,murine double minute 2 (MDM-2),and cyclin-dependent kinase 4 (CDK4).Two patients had local tumor recurrences at 6 and 14 months after initial surgery during follow-up.ALT of laryngopharynx is an indolent tumor.Immunohistochemical staining for MDM-2 and CDK4 is helpful in pathological diagnosis.