The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
Oil droplets in nanometer scale which are dispersed in water cannot be separated easily. An attractive technique is carried out by electrical phenomena to demulsify oil in water emulsion. In this research, non-uniform...Oil droplets in nanometer scale which are dispersed in water cannot be separated easily. An attractive technique is carried out by electrical phenomena to demulsify oil in water emulsion. In this research, non-uniform electric field or dielectrophoresis (DEP) is applied to remove sunflower oil (which is dispersed in the water). Effectsof temperature, time and voltage (using AC-electric field) were considered to get the highest DEP-force (Fdi) and the best results. The oil particles sizes with average of approximately 76 nm have been shown using a ZetaSizer Nano ZS, Model ZEN 1600 (Malvem Instrument Ltd.). The maximum separation efficiency of 85% is obtained at the optimum temperature of 38 ℃ and voltage of 3000 V.展开更多
In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software...In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz.展开更多
The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure...The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.展开更多
Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characte...Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.展开更多
To fulfill a zero-emission in the process of grinding and thoroughly eliminate the influences of the conventional grinding fluids on the eco-environment as well as save up electric energy and reduce in production cost...To fulfill a zero-emission in the process of grinding and thoroughly eliminate the influences of the conventional grinding fluids on the eco-environment as well as save up electric energy and reduce in production costs, the new grinding fluids of botanic oils on water were developed, in which a lot of tiny water droplets attached with micro oil films were blown to the machining area by a compressing air-jet so good as to produce lubricating and cooling roles.In this study, grinding performances of the new fluids were investigated by comparison to the conventional ones such as emulsion on the plane NC grinder.展开更多
The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. ...The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya,respectively. The critical hydrocarbon charging time was at the late Hercynian.展开更多
In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering p...In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.展开更多
This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ...This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ) rang- ing from 3% to 7% (by volume). For comparative purposes, experiments were also carried out with water. Increase in φ of micro-emulsion systems results in an increment in the gas holdup and a decrease in the volumetric gas-liquid oxygen transfer coefficient and liquid circulation velocity, attributed to the escalation in the viscosity of mi- cro-emulsions. The gas holdup and volumetric mass transfer coefficient for micro-emulsion systems are signifi- cantly higher than that of water system. Two correlations are developed to predict the gas holdup and oxygen trans- fer coefficient展开更多
Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 materi...Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.展开更多
Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniem...Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.展开更多
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
文摘Oil droplets in nanometer scale which are dispersed in water cannot be separated easily. An attractive technique is carried out by electrical phenomena to demulsify oil in water emulsion. In this research, non-uniform electric field or dielectrophoresis (DEP) is applied to remove sunflower oil (which is dispersed in the water). Effectsof temperature, time and voltage (using AC-electric field) were considered to get the highest DEP-force (Fdi) and the best results. The oil particles sizes with average of approximately 76 nm have been shown using a ZetaSizer Nano ZS, Model ZEN 1600 (Malvem Instrument Ltd.). The maximum separation efficiency of 85% is obtained at the optimum temperature of 38 ℃ and voltage of 3000 V.
基金supported by the National Natural Science Foundation of China(Grant Nos.42074142 and 51527805)。
文摘In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz.
基金Supported by the National iqatural Science Foundation of China (20925623, U1162205).
文摘The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.
基金Supported by the National Natural Science Foundation of China (50974095, 41174109)Gao Zhongke (高忠科) was also supported by the National Natural Science Foundation of China (61104148)+2 种基金the National Science and Technology Major Projects (2011ZX05020-006)Specialized Research Fund for the Doctoral Program of Higher Education of China(20110032120088)the Independent Innovation Foundation of Tianjin University
文摘Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.
文摘To fulfill a zero-emission in the process of grinding and thoroughly eliminate the influences of the conventional grinding fluids on the eco-environment as well as save up electric energy and reduce in production costs, the new grinding fluids of botanic oils on water were developed, in which a lot of tiny water droplets attached with micro oil films were blown to the machining area by a compressing air-jet so good as to produce lubricating and cooling roles.In this study, grinding performances of the new fluids were investigated by comparison to the conventional ones such as emulsion on the plane NC grinder.
文摘The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya,respectively. The critical hydrocarbon charging time was at the late Hercynian.
文摘In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.
文摘This study reports an experimental investigation on hydrodynamics and mass transfer characteristics in a 15.6x10-3 m3 external loop airlift reactor for oil-in-water micro-emulsions with oil to water volume ratio (φ) rang- ing from 3% to 7% (by volume). For comparative purposes, experiments were also carried out with water. Increase in φ of micro-emulsion systems results in an increment in the gas holdup and a decrease in the volumetric gas-liquid oxygen transfer coefficient and liquid circulation velocity, attributed to the escalation in the viscosity of mi- cro-emulsions. The gas holdup and volumetric mass transfer coefficient for micro-emulsion systems are signifi- cantly higher than that of water system. Two correlations are developed to predict the gas holdup and oxygen trans- fer coefficient
基金Supported by the National Science Foundation of Iran
文摘Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20100007120010)the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF11A05)Science Foundation of China University of Petroleum,Beijing (GrantNo. KYJJ2012-04-17)
文摘Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.