The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a cor...The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.展开更多
An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an...An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.展开更多
End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio...End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.展开更多
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse...Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia...To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.展开更多
To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the re...To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the regulator.The action mechanism of DDA and PDP was explored through contact angle measurement,zeta potential detection,solution chemistry calculation,FTIR analysis,and XPS detection.The flotation results showed that when DDA dosage was 35 mg/L and PDP dosage was 40 mg/L,the maximum floating difference between brucite and calcite was 79.81%,and the selectivity separation index was 6.46.The detection analysis showed that the main dissolved component HPO_(4)^(2−)of PDP is selectively strongly adsorbed on the Ca site on the surface of calcite,promoting the adsorption of the main dissolved component RNH_(3)^(+)of DDA on calcite surface,while brucite is basically not affected by PDP.Therefore,PDP is an effective regulator for the reverse flotation separation of brucite and calcite in DDA system.展开更多
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
The present study investigates the effects of congruency and frequency on adjective-noun collocational processing for Chinese learners of English at two proficiency levels based on the data obtained in an online accep...The present study investigates the effects of congruency and frequency on adjective-noun collocational processing for Chinese learners of English at two proficiency levels based on the data obtained in an online acceptability judgment task.The subject pool of this research included 60 English majors studying at a university in China;30 were selected as a higher-proficiency group and 30 as a lower-proficiency group according to their Vocabulary Levels Test(Schmitt et al.,2001)scores and their self-reported proficiency in English.The experimental materials were programmed to E-prime 2.0 and included six types of collocations:(1)15 high-frequency congruent collocations,(2)15 low-frequency congruent collocations,(3)15 high-frequency incongruent collocations,(4)15 low-frequency incongruent collocations,(5)15 Chinese-only items,and(6)75 unrelated items for baseline data.The collected response times(RTs)and accuracy rates data were statistically analyzed by the use of an ANOVA test and pairwise comparisons through SPSS 16.0 software.The results revealed that:(1)the adjective-noun collocational processing of Chinese English learners is influenced by collocational frequency,congruency and L2 proficiency;(2)the processing time is affected by the interaction of congruency and frequency;and(3)the interactive effect of L2 proficiency in conjunction with congruency and frequency also influences the processing quality.展开更多
The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition...The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition and optical property were investigated by means of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), optical contact angle tester and UV-Vis spectroscopy. The results show that Nd doping obviously influences the hydrophilic and photocatalytic activities of TiO2thin films. Nd doping could cause the TiO2 lattice distortion, inhibit phase transition from anatase to rutile, cause red shift of the absorption spectrum edge, produce hydroxyl radicals (·OH), and accelerate surface hydroxylation, which result in a significant improvement in the hydrophilicity and photoreactivity of Nd-doped TiO2 thin films. When the content of Nd is 0.1% (mass fraction), TiO2 thin films achieve the smallest grain size (about 15 nm), and the hydrophilic and photocatalytic activities of TiO2 thin film reach the maximum, the contact angle is only 8.1°, and 92% of methylene blue is finally degraded. Moreover, the modification mechanism of Nd doping was also discussed.展开更多
The influencing factors in adsorption such as adsorption time, pulp concentration, bacterial concentration, pH as well as ionic strength were investigated to explore the relationship among them and bacterial adsorptio...The influencing factors in adsorption such as adsorption time, pulp concentration, bacterial concentration, pH as well as ionic strength were investigated to explore the relationship among them and bacterial adsorption. The adsorption was a rapid process for bacterial adhesion to chalcopyrite. The extent of adsorption increased with increasing initial bacterial concentration and pulp concentration. The optimal pH for Acidithiobacillusferrooxidans adsorption onto chalcopyrite surfaces was in the range of pH 1-3. The increase of ionic strength led to decrease in bacterial adsorption, which can be well explained by electric double layer theory. The adsorption behavior appeared to be controlled by both hydrophobic and electrostatic interactions at the interface of bacteria and mineral,展开更多
Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(s...Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(sample TC1+1).The X-ray diffraction shows that the titania films are composed of anatase,and a little Ni4Ti3 phase in the heat treated substrate is also detected.The X-ray photoelectron spectroscopy results indicate that the titania film completely covered the NiTi substrate for sample TC1+1.The sample TC1+1 is hydrophilic with a contact angle about 20°,and UV illumination treatment for 15 min further decreases the contact angle to(9.2±3.2)°.The potentiodynamic polarization test in 0.9% NaCl solution reveals a better corrosion resistance of sample TC1+1 than the polished NiTi sample.展开更多
Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were chara...Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The friction and wear properties of OA/LaBO3·H2O nanorods in rapeseed oil were evaluated with a four-ball tribo-tester. The results show that the as-prepared OA/LaBO3·H2O nanorods are hydrophobic and display nanorods morphology with uniform diameter of about 50 nm and length of up to 500 nm. In the meantime, OA/LaBO3·H2O nanorods can obviously improve the anti-wear and friction-reducing capacities of rapeseed oil, and the optimal anti-wear and friction-reducing properties of rapeseed oil were obtained at an OA/LaBO3·H2O content of 1% (mass fraction).展开更多
文摘The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.
基金financial support from the Public Welfare Projects of Zhejiang Province,China(No.LGG22E010002)the National Natural Science Foundation of China(Nos.52001300,52171083)。
文摘An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal.
基金Supported by PetroChina Company Limited(2020 B-2711)。
文摘End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Chinese Academy of Sciences[grant number 060GJHZ2023079GC].
文摘Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.
基金Projcet(52279119)supported by the National Natural Science Foundation of ChinaProject(XZ202201ZY0021G)supported by the Science and Technology Planning Project of Xizang Autonomous Region,China+1 种基金Project(2019QZKK0904)supported by the Second Xizang Plateau Scientific Expedition and Research Program of ChinaProject(51922104)supported by the National Natural Science Foundation for Distinguished Young Scholars of China。
文摘To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.
基金the General Program of the National Natural Science Foundation of China(Nos.51974064,52174239)the National Key R&D Program of China(No.2021YFC2902400)the Outstanding Postdoctoral Program of Jiangsu Province,China(No.2022ZB521).
文摘To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the regulator.The action mechanism of DDA and PDP was explored through contact angle measurement,zeta potential detection,solution chemistry calculation,FTIR analysis,and XPS detection.The flotation results showed that when DDA dosage was 35 mg/L and PDP dosage was 40 mg/L,the maximum floating difference between brucite and calcite was 79.81%,and the selectivity separation index was 6.46.The detection analysis showed that the main dissolved component HPO_(4)^(2−)of PDP is selectively strongly adsorbed on the Ca site on the surface of calcite,promoting the adsorption of the main dissolved component RNH_(3)^(+)of DDA on calcite surface,while brucite is basically not affected by PDP.Therefore,PDP is an effective regulator for the reverse flotation separation of brucite and calcite in DDA system.
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
文摘The present study investigates the effects of congruency and frequency on adjective-noun collocational processing for Chinese learners of English at two proficiency levels based on the data obtained in an online acceptability judgment task.The subject pool of this research included 60 English majors studying at a university in China;30 were selected as a higher-proficiency group and 30 as a lower-proficiency group according to their Vocabulary Levels Test(Schmitt et al.,2001)scores and their self-reported proficiency in English.The experimental materials were programmed to E-prime 2.0 and included six types of collocations:(1)15 high-frequency congruent collocations,(2)15 low-frequency congruent collocations,(3)15 high-frequency incongruent collocations,(4)15 low-frequency incongruent collocations,(5)15 Chinese-only items,and(6)75 unrelated items for baseline data.The collected response times(RTs)and accuracy rates data were statistically analyzed by the use of an ANOVA test and pairwise comparisons through SPSS 16.0 software.The results revealed that:(1)the adjective-noun collocational processing of Chinese English learners is influenced by collocational frequency,congruency and L2 proficiency;(2)the processing time is affected by the interaction of congruency and frequency;and(3)the interactive effect of L2 proficiency in conjunction with congruency and frequency also influences the processing quality.
基金Projects(51162022,21201098)supported by the National Natural Science Foundation of ChinaProject(GJJ14126)supported by Jiangxi Provincial Education Department,ChinaProject(2012019)supported by the Test Foundation of Nanchang University,China
文摘The Nd-doped TiO2 thin films with higher hydrophilic and photocatalytic activities were prepared on glass slides by an acid-catalyzed sol?gel method. The effects of Nd doping on crystalline phase, surface composition and optical property were investigated by means of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), optical contact angle tester and UV-Vis spectroscopy. The results show that Nd doping obviously influences the hydrophilic and photocatalytic activities of TiO2thin films. Nd doping could cause the TiO2 lattice distortion, inhibit phase transition from anatase to rutile, cause red shift of the absorption spectrum edge, produce hydroxyl radicals (·OH), and accelerate surface hydroxylation, which result in a significant improvement in the hydrophilicity and photoreactivity of Nd-doped TiO2 thin films. When the content of Nd is 0.1% (mass fraction), TiO2 thin films achieve the smallest grain size (about 15 nm), and the hydrophilic and photocatalytic activities of TiO2 thin film reach the maximum, the contact angle is only 8.1°, and 92% of methylene blue is finally degraded. Moreover, the modification mechanism of Nd doping was also discussed.
基金Projects (41073060,21007009,50874032) supported by the National Natural Science Foundation of ChinaProject (B604) supported by Shanghai Leading Academic Discipline Project,ChinaProject (10CG34) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,China
文摘The influencing factors in adsorption such as adsorption time, pulp concentration, bacterial concentration, pH as well as ionic strength were investigated to explore the relationship among them and bacterial adsorption. The adsorption was a rapid process for bacterial adhesion to chalcopyrite. The extent of adsorption increased with increasing initial bacterial concentration and pulp concentration. The optimal pH for Acidithiobacillusferrooxidans adsorption onto chalcopyrite surfaces was in the range of pH 1-3. The increase of ionic strength led to decrease in bacterial adsorption, which can be well explained by electric double layer theory. The adsorption behavior appeared to be controlled by both hydrophobic and electrostatic interactions at the interface of bacteria and mineral,
基金Project(xjj2011096)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(201107)supported by the Open Project Program of State Key Laboratory of Metastable Materials Science and Technology,ChinaProject(50901058)supported by the National Natural Science Foundation of China
文摘Titania films with nano-sized pores were prepared on the NaOH?HCl pretreated NiTi alloy substrate by sol?gel method.A crack-free film is obtained for the sample with a dense inner layer and a porous outside layer(sample TC1+1).The X-ray diffraction shows that the titania films are composed of anatase,and a little Ni4Ti3 phase in the heat treated substrate is also detected.The X-ray photoelectron spectroscopy results indicate that the titania film completely covered the NiTi substrate for sample TC1+1.The sample TC1+1 is hydrophilic with a contact angle about 20°,and UV illumination treatment for 15 min further decreases the contact angle to(9.2±3.2)°.The potentiodynamic polarization test in 0.9% NaCl solution reveals a better corrosion resistance of sample TC1+1 than the polished NiTi sample.
基金Project(50975282)supported by the National Natural Science Foundation of China
文摘Oleic acid (denoted as OA) surface-caped lanthanum borate nanorods, abbreviated as OA/LaBO3·H2O, were prepared via hydrothermal method. The microstructures of the as-prepared OA/LaBO3·H2O nanorods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The friction and wear properties of OA/LaBO3·H2O nanorods in rapeseed oil were evaluated with a four-ball tribo-tester. The results show that the as-prepared OA/LaBO3·H2O nanorods are hydrophobic and display nanorods morphology with uniform diameter of about 50 nm and length of up to 500 nm. In the meantime, OA/LaBO3·H2O nanorods can obviously improve the anti-wear and friction-reducing capacities of rapeseed oil, and the optimal anti-wear and friction-reducing properties of rapeseed oil were obtained at an OA/LaBO3·H2O content of 1% (mass fraction).