In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets ...In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.展开更多
Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. T...Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. The sign and amplitude of the asymmetry vary systematically and are functions of the distance between the spreading center and the location of the inferred location of maximum regional buoyancy (LMRB) in the asthenosphere. The LMRB is a smooth line derived from the observed asymmetry and is more centered at the regional topographic high than the spreading center. These observations are best explained by active upwelling of the underlying buoyant asthenosphere rather than by pressure-release melting.展开更多
The aim of the study is to monitor and assess landslide hazards by remote sensing data processing and GIS (Geographic Information Service) spatial analysis. Idukki district, the western Ghats of India was chosen as ...The aim of the study is to monitor and assess landslide hazards by remote sensing data processing and GIS (Geographic Information Service) spatial analysis. Idukki district, the western Ghats of India was chosen as test area, because of frequent destructive mass wasting processes. Western Ghats is a prominent orographic feature that runs parallel to the south west coast of India. Predicting landslide hazard on a regional scale, namely the assessment of actual and potential mass movement over large area is carried out using Remote Sensing and GIS. A numerical weightage to the causative factors of slope instability such as slope, relative relief, aspect, curvature, drainage density, drainage frequency, land use, road buffer and drainage buffer are assigned as per earlier workers for the purpose of landslide susceptibility zonation. A high degree of match is found between observed and predicted landslide hazard by the procedure employed in the study.展开更多
Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality an...Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.展开更多
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Un...On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.展开更多
This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic ...This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature (P/T) index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1℃ to 1.7℃ by 2020 and by 2℃ to 3℃ by 2o5o. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon, and a reduction between 3% and 20% is expected for 2050. The reductions in water availability were projected for all altitude levels and plant communities. The most marked reduction was under the HADLEY- A2 scenario, in which the lower limit of the altitudinal range increased from 2,71o to 3,31o m (2050 horizon) with reductions in the P/T index between 36% and 39% compared to the current climate. Most plant species tended to shift their distribution from 20o to 300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2o5o temporal horizon, 3o% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival (〉4,210 m).展开更多
This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the So...This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction,and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy.The results reveal that the activities of the Marion hotspot can be divided into three main phases:interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma),interaction with the SWIR (68.5-42.7 Ma),and intra-plate volcanism (42.7-0 Ma).These three phases correspond to the formation of the eastern,central,and western parts of the Del Cano Rise,respectively.The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance.The periodicity of the Marion hotspot is about 25 Ma,which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma).展开更多
Two records of the crust laminae from the Marcus-Wake Seamounts and the Magellan Seamount were biostratigraphically studied. Based on biological imprints of the calcareous nannofossils, the geological ages of the two ...Two records of the crust laminae from the Marcus-Wake Seamounts and the Magellan Seamount were biostratigraphically studied. Based on biological imprints of the calcareous nannofossils, the geological ages of the two records were determined, with CM1D03 from the Marcus-Wake Seamounts being of late Paleocene to Pleistocene and CM3D06 from the Magellan Seamount of Late Cretaceous (more than 70.0 Ma). There are the obvious temporal-spatial differences in the initial formation period and enrichment characteristics of the cobalt-rich crusts of the two seamount chains and differences in the combination and distribution of microfossils in the inner crust layers between the seamounts. These differences are due to the adaptabilities of oceanic species in different environments. Ecological research was carried out in terms of population size of the calcareous nannofossi|s preserved in the crustal layers to discern the relation of the geological events at the Eocene-Oligocene (E/O) tran- sition. The results show the transitions and recombination of species in the biotic community during the E/O transition obvi- ously corresponded to 25 mm depth in the CM1D03 crust and 58 mm depth in the CM3D06 crust. The changes in biological species and the formation of particular ecological structures indicate the adaptive response of the paleo-biological community in the western Pacific Ocean to the global cold-climate events and the close correlation between the formation of the crust and the global climate change.展开更多
Its unique history and jaw-dropping scenery set Mianshan Mountain apart from the rest Mianshan Mountain is a famous culturaland historical site in the city of Jiexiuin north China’s Shanxi Province.As part of a mount...Its unique history and jaw-dropping scenery set Mianshan Mountain apart from the rest Mianshan Mountain is a famous culturaland historical site in the city of Jiexiuin north China’s Shanxi Province.As part of a mountain range that extendsover 50 km in length.The mountain,whichreaches a height of 2,571 meters above sea展开更多
There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation ...There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation in this area. Aluminum (Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K) and magnesium (Mg) contents of 237 topsoil samples covering a 2.8-km altitudinal gradient in uncultivated areas along the Qinghai-Tibet Railway of China were measured using inductively coupled plasma atomic emission spectroscopy. The spatial distribution of the elements and its relationship to the parent rocks and climatic parameters were analyzed. Soils along the gradient are derived from a range of parent materials, but most are less than 30 cm deep with little development (Cambisols). Soil Al, Fe and Mg contents showed a decreasing trend from the start station (Xining Station) to end station (Lhasa Station) of the Qinghai-Tibet Railway, whereas soil K and Na contents were relative stable from Xining Station to the Kunlun Mountains and then increased gradually. Soil Ca content was lower in the southern part of the Tanggula Mountains. The major soil element contents clearly reflected the parent rock and climatic influences. Soils with higher Ca content appeared in areas with Ca-Mg carbonate rocks, soils with higher Al were found in areas with silicate-rich and high-Al silicate clastic rocks and silicate-rich aluminosilicate loose sediments. Soils with higher K and Na contents appeared in areas with high-K, high-Na and silicate-rich aluminosilicate rocks. Soil Na and K contents were affected by temperature, whereas the contents of Mg, Fe, Ca and Al were more affected by precipitation. Soil Na and K contents increased with increasing temperatures, whereas the contents of Mg, Fe, Ca and Al decreased with increasing precipitation. This analysis provides a relationship between soil properties and rapidly changing environmental conditions. The data can be used to investigate the effect of the climate or land use change on soil properties.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.41101055)the Hundred Talents Program of the Chinese Academy of Sciences granted to Tonghua Wu (Grant No.51Y251571)the “National Basic Research Program of China (973 Program)” (Grant No.2010CB951402)
文摘In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.
基金supported by the U.S.National Science Foundation under contract No.0207466.
文摘Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. The sign and amplitude of the asymmetry vary systematically and are functions of the distance between the spreading center and the location of the inferred location of maximum regional buoyancy (LMRB) in the asthenosphere. The LMRB is a smooth line derived from the observed asymmetry and is more centered at the regional topographic high than the spreading center. These observations are best explained by active upwelling of the underlying buoyant asthenosphere rather than by pressure-release melting.
文摘The aim of the study is to monitor and assess landslide hazards by remote sensing data processing and GIS (Geographic Information Service) spatial analysis. Idukki district, the western Ghats of India was chosen as test area, because of frequent destructive mass wasting processes. Western Ghats is a prominent orographic feature that runs parallel to the south west coast of India. Predicting landslide hazard on a regional scale, namely the assessment of actual and potential mass movement over large area is carried out using Remote Sensing and GIS. A numerical weightage to the causative factors of slope instability such as slope, relative relief, aspect, curvature, drainage density, drainage frequency, land use, road buffer and drainage buffer are assigned as per earlier workers for the purpose of landslide susceptibility zonation. A high degree of match is found between observed and predicted landslide hazard by the procedure employed in the study.
基金supported by the National Key Basic Research Program of China (973Program, 2015CB452706)the youth talent team program of the Institute of Mountain Hazards and Environment, CAS (SDSQB-2015-01)+1 种基金the National Natural Science Foundation of China (41401198 and 41571527)the Youth Innovation Promotion Association, CAS(No. 2016332)
文摘Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.
文摘On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.
文摘This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature (P/T) index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1℃ to 1.7℃ by 2020 and by 2℃ to 3℃ by 2o5o. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon, and a reduction between 3% and 20% is expected for 2050. The reductions in water availability were projected for all altitude levels and plant communities. The most marked reduction was under the HADLEY- A2 scenario, in which the lower limit of the altitudinal range increased from 2,71o to 3,31o m (2050 horizon) with reductions in the P/T index between 36% and 39% compared to the current climate. Most plant species tended to shift their distribution from 20o to 300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2o5o temporal horizon, 3o% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival (〉4,210 m).
基金supported by SOA Funds for Young Scientists(Grant Nos.1084-10)Special Funding for the Basic Scientific Research(Grant Nos.JG0706and JG0716)
文摘This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction,and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy.The results reveal that the activities of the Marion hotspot can be divided into three main phases:interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma),interaction with the SWIR (68.5-42.7 Ma),and intra-plate volcanism (42.7-0 Ma).These three phases correspond to the formation of the eastern,central,and western parts of the Del Cano Rise,respectively.The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance.The periodicity of the Marion hotspot is about 25 Ma,which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma).
基金supported by the National Natural Science Foundation of China(Grant Nos.41076072 and 40676025)
文摘Two records of the crust laminae from the Marcus-Wake Seamounts and the Magellan Seamount were biostratigraphically studied. Based on biological imprints of the calcareous nannofossils, the geological ages of the two records were determined, with CM1D03 from the Marcus-Wake Seamounts being of late Paleocene to Pleistocene and CM3D06 from the Magellan Seamount of Late Cretaceous (more than 70.0 Ma). There are the obvious temporal-spatial differences in the initial formation period and enrichment characteristics of the cobalt-rich crusts of the two seamount chains and differences in the combination and distribution of microfossils in the inner crust layers between the seamounts. These differences are due to the adaptabilities of oceanic species in different environments. Ecological research was carried out in terms of population size of the calcareous nannofossi|s preserved in the crustal layers to discern the relation of the geological events at the Eocene-Oligocene (E/O) tran- sition. The results show the transitions and recombination of species in the biotic community during the E/O transition obvi- ously corresponded to 25 mm depth in the CM1D03 crust and 58 mm depth in the CM3D06 crust. The changes in biological species and the formation of particular ecological structures indicate the adaptive response of the paleo-biological community in the western Pacific Ocean to the global cold-climate events and the close correlation between the formation of the crust and the global climate change.
文摘Its unique history and jaw-dropping scenery set Mianshan Mountain apart from the rest Mianshan Mountain is a famous culturaland historical site in the city of Jiexiuin north China’s Shanxi Province.As part of a mountain range that extendsover 50 km in length.The mountain,whichreaches a height of 2,571 meters above sea
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB03030500)the National Key Technology Research and Development Program of China (No.2013BAC04B02)the National Natural Science Foundation of China (Nos.40801042 and 90202012)
文摘There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation in this area. Aluminum (Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K) and magnesium (Mg) contents of 237 topsoil samples covering a 2.8-km altitudinal gradient in uncultivated areas along the Qinghai-Tibet Railway of China were measured using inductively coupled plasma atomic emission spectroscopy. The spatial distribution of the elements and its relationship to the parent rocks and climatic parameters were analyzed. Soils along the gradient are derived from a range of parent materials, but most are less than 30 cm deep with little development (Cambisols). Soil Al, Fe and Mg contents showed a decreasing trend from the start station (Xining Station) to end station (Lhasa Station) of the Qinghai-Tibet Railway, whereas soil K and Na contents were relative stable from Xining Station to the Kunlun Mountains and then increased gradually. Soil Ca content was lower in the southern part of the Tanggula Mountains. The major soil element contents clearly reflected the parent rock and climatic influences. Soils with higher Ca content appeared in areas with Ca-Mg carbonate rocks, soils with higher Al were found in areas with silicate-rich and high-Al silicate clastic rocks and silicate-rich aluminosilicate loose sediments. Soils with higher K and Na contents appeared in areas with high-K, high-Na and silicate-rich aluminosilicate rocks. Soil Na and K contents were affected by temperature, whereas the contents of Mg, Fe, Ca and Al were more affected by precipitation. Soil Na and K contents increased with increasing temperatures, whereas the contents of Mg, Fe, Ca and Al decreased with increasing precipitation. This analysis provides a relationship between soil properties and rapidly changing environmental conditions. The data can be used to investigate the effect of the climate or land use change on soil properties.